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Abstract—We revisit a crucial privacy problem in this paper —
can the sensitive information, like the passwords and personal
data, frequently typed by user on mobile devices be inferred
through the motion sensors of wearable device on user’s wrist,
e.g., smart watch or wrist band? Existing works have achieved
the initial success under certain context-aware conditions, such
as 1) the horizontal keypad plane, 2) the known keyboard size,
3) and/or the last keystroke on a fixed “enter” button. Taking
one step further, the key contribution of this paper is to fully
demonstrate, more importantly alarm people, the further risks
of typing privacy leakage in much more generalized context-free
scenarios, which are related to most of us for the daily usage
of mobile devices. We validate this feasibility by addressing a
series of unsolved challenges and developing a prototype system
aLeak. Extensive experiments show the efficacy of aLeak, which
achieves promising successful rates in the attack from more than
300 rounds of different users’ typings on various mobile platforms
without any context-related information.

I. INTRODUCTION

Rich sensors on electronic devices, e.g., wearables, could
generate valuable sensory data [14], [21], for designing a cor-
pus of useful applications, e.g., healthcare [16], [20], driving
monitoring [6], fitness guidance [4], authentications [17], [5],
mobile social networks [19], etc. We have thus nowadays
witnessed their increasing popularity and high penetration into
our daily life. However, studies, like [14], [13], [8], also unveil
the double-edged fact of these sensory data recently, which
could form side-channels and leak aspects of people’s vital
information. For instance, most our personal accounts now can
be on-line accessed. It is hence inevitable for people to type
private information explicitly [7], e.g., passwords, personal
particulars, security codes, etc., on various mobile platforms,
e.g., smart phones, POSs, ATMs, door entrance panels, etc.
Therefore, one crucial and specific piece of the problem,
which may relate to most of us, is — whether such sensitive
yet frequently typed information can be inferred through the
motion sensors of wearable, like a smart watch or wrist band,
on user’s wrist? If so, the consequence is serious, as the barrier
to launch this side-channel attack is trivial [13], [8].

This paper, of course, is not the first attempt at this prob-
lem. Instead, we aim to comprehensively unveil the potential
possibility of using wearable sensors to sacrifice user’s typing
safty, and fully demonstrate (more importantly alarm people)
the further privacy leakage risks that may not be viable before,
by addressing a series of unsolved challenges.
Challenges. To launch this side-channel attack, attackers need
to precisely recover each piece of wearable’s moving displace-
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Fig. 1: Illustration of wearable side-channel attack. (a)
Recover all displacement vectors and the keypad plane posture
angle θ. (b) Match the moving trajectory on the keyboard with
correct (left) and incorrect (right) keyboard sizes, incurring dif-
ferent results, e.g., “31970” (correct) yet “21870” (incorrect).

ment vectors, which capture user’s finger transitions between
two keystrokes, as in Fig. 1(a). These vectors are expected
to be used to reconstruct the keypad plane first, since the
keypad plane can be in an arbitrary posture, e.g., the device,
such as smart phone or POS machine, is held in user’s hand
during the typing. As these vectors are not strictly co-plane
due to various errors, they are then projected onto the keypad
plane to obtain wearable’s moving trajectory along this plane.
By further matching the recovered trajectory to the keyboard
layout, the typed information can finally get “decoded”, e.g.,
“31970” in Fig. 1(b-left). During this process, following three
challenges will be encountered.

Inaccurate motion recovery. Wearable’s displacement vec-
tors are derived from the accelerometer data from wearables,
while the result is naturally inaccurate as the double-integral
could rapidly accumulate and amply acceleration errors. Re-
cent remedy methods, e.g., the mean-removal [14], become
much less effective, since the zero velocity is not guaranteed
at both ends of each vector and finger’s transition follows a
curved trace (illustrated in Fig. 1 and detailed in §II-B). Hence,
the keypad plane (with an arbitrary posture) cannot be reliably
reconstructed in the first place, and erroneous vectors cannot
truthfully reflect wearable’s moving trajectory neither — it is
non-trivial to launch above side-channel attack.

Unknown keyboard size. Even the keypad’s posture was
precisely derived finally, the typed information is still not
immediately decodable, since the keyboard size, e.g., x and y
values in Fig. 1(b), is unknown, lacking the correct decoding
(or matching) reference. The keyboard size can vary quite
differently cross platforms, e.g., smart phones, tablets, POSs,
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door entrance panels, APPs, etc. Using any default keyboard
size, we can always derive a most likely result (w.r.t. this
size), which however tends to be wrong, e.g., the wrong result
“21870” in Fig. 1(b-right) when an incorrect keyboard is used.
Thus, without this meta information, the attack stagnates again.

Information ambiguity. After the keyboard size, e.g., x and
y values in Fig. 1(b), could be eventually figured out, wear-
able’s displacement trajectory may still be embedded into the
keyboard layout in different ways, leading to different results.
Such an ambiguity also needs to be effectively removed.

To overcome above issues, existing works [13], [8] achieve
the initial success under certain known contexts about user’s
typing: 1) the horizontal keypad plane, 2) the known keyboard
sizes, e.g., ATM or POS panels, 3) and/or the last keystroke on
a fixed “enter” button. However, without explicitly addressing
above challenges, it is unclear about the potential periphery of
this side-channel attack. One concrete concern, for instance, is
whether our typing privacy on variant mobile platforms, which
violate above context-aware assumptions (e.g., unknown key-
pad postures and keyboard sizes), can still be compromised.
We believe that this investigation is more critical, as most our
personal accounts now can be accessed on-line, and people
are likely to type private information, e.g., passwords, personal
data, security codes, etc., in such scenarios.

Contributions. In this paper, we present aLeak to explore the
possibility of the context-free side-channel attack through the
motion sensors from wearables, which could be smart watches
or bands worn on user’s wrist. Smart watch is designed for
user’s right or left either hand, while many people now wear
it on the right hand, without the concern that it is easier to
adjust time for traditional watches on the left hand. In addition,
many people also tend to wear a smart band on the right hand
while a common watch is on the left hand [13]. Therefore,
when wearables and the finger move concurrently during the
typing, by accessing the data from wearable motion sensors,
e.g., accelerometers and gyroscope, (attack model is detailed in
§II), adversary could launch the wearable side-channel attack.

We deeply analyze the wearable sensory data and propose a
series of key techniques to address aforementioned challenges
in aLeak. To demonstrate the efficacy of aLeak, we conduct
extensive experiments with 5 users wearing the smart watch
and act as the adversary to attack more than 300 rounds of
users’ password inputs on various mobile platforms, including
smart phones, tablets, door entrance input panels, telephones
and POS, with the keypad posture angles changing from 0◦ to
90◦. Experiments show that without any context information,
aLeak’s top-1 successful attacking rate is 45% and the top-5
accuracy increases to 94%, while the top-5 accuracy of the
most recent RCCS [13] is 15% merely (even partial context
information is provided for RCCS otherwise its attack cannot
proceed). In summary, the contributions of this paper are:

• Demonstrating the possibility to leak user’s typing pri-
vacy in a context-free manner and unveiling (more impor-
tantly alarming people) the further privacy leakage risks
that may not be viable before.

• Proposing a set of key techniques to address, inaccurate
motion recovery, unknown keyboard size and information
ambiguity, three major challenges in aLeak.

• Developing a prototype system and conducting extensive
experiments with 5 volunteers, by attacking their more
than 300 rounds of inputs on a variety of mobile platforms
with different keyboard sizes and keypad postures.

Organization. In the rest of the paper, we introduce the
wearable side-channel attack preliminary in §II and elaborate
the aLeak design in §III. The evaluation are conducted in §IV.
We review related works in §V before the conclusion §VI.

II. PRELIMINARY AND CHALLENGES

Although biometric sensors, e.g., Touch ID, are widely
adopted by mobile devices to avoid a direct password input,
they are not generic enough for many daily services on the
device that require an explicit private information input [7],
such as 1) PINs of many personal accounts for an on-line
access, 2) personal particulars, e.g., phone numbers, credit card
security codes and date of birth, provided during transactions,
and 3) passwords of mobile devices without biometric sensors.
In addition, such an explicit typing can also commonly occur
on many third-party terminals, like 4) depositions on ATMs,
5) transactions on POS machines, and 6) password typing on
door entrance panels, etc.

For all these potential privacy leakage cases, the posture
of the typing keypads can be arbitrary, e.g., mobiles or POS
machines are hold in user’s hands, with variant keyboard sizes.
Hence, if the design challenges stated in §I can be addressed,
user’s typing privacy will easily get compromised and scarified
(which are not viable before). In the rest of this section, we will
elaborate attack model (§II-A) and design challenges (§II-B).

A. Attack model

Similar as all existing studies [14], [13], [8], the adversary
in aLeak could hack the same set of motion sensor data
(accelerometers and gyroscope) from wearables on user’s wrist
to launch the side-channel attack. There are two common ways
to illegally access such sensitives motion data [8], [13]:

Installing malicious applications. The adversary can trick a
user (e.g., victim) to install malicious applications on smart
watch or phone without victim’s notice [13], e.g., embedding
malicious codes in popular applications and making them free
in the APP market [8]. The malicious APP runs in background
and would send the motion sensor data to adversary’s server
when Wi-Fi is available.

Sniffing blue-tooth packets. A wearable device is usually
paired with victims’ mobile phone through blue-tooth and the
wearable needs to report its sensor data to the phone for the
data synchronization and logging purposes. Recent studies find
that the adversary could overhear the transmitted blue-tooth
packets in the vicinity of the victim using wireless sniffers
[13], [11], [12] to recover the motion data.

With the harvested motion data from victim’s wearable, the
adversary needs to further cope with the following challenges
to enable the context-free side-channel attack.
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Fig. 2: Accuracy of derived vectors. (a) Amplitude and (b)
angle errors, where “DI” and “MR” stand for double-integral
and mean-removal, respectively, and the maximum heights of
the two traces T1 and T2 are about 1cm and 3cm, respectively.

B. Design challenges

1) Inaccurate motion recovery: The adversary needs to pre-
cisely recover wearable’s displacement vectors in this attack.
To understand the accuracy desired, considering the keyboard
size x and y equal as an example, if we, in this case, want to
reliably identify the two keystrokes covered by one vector as in
Fig. 1, vector’s amplitude (e.g., length) and angle (between two
consecutive vectors) errors should be less than 28% and 19◦,
respectively (the derivation detail is omitted here). Of course,
errors could further accumulate cross vectors in a moving
trajectory. Accuracy is thus expected to be even higher.

We conduct experiments to examine this feasibility. Fig. 2
shows that the direct double-integral (T1-DI) is highly inaccu-
rate. The percentage of its amplitude error is 30.3% on average
and can be up to 112.8% (w.o. outliers). Meanwhile, the angle
error is 67.0◦ on average and can be up to 160◦. In Fig. 2, we
further apply the mean-removal technique [14] to improve the
accuracy, where the amplitude and angle errors (T1-DI+MR)
can be reduced to 23.8% and 28.3◦ on average, respectively.

The mean-removal becomes much less effective here due
to the reason that the zero-velocity condition is not strictly
satisfied at both ends of each vector. We also notice a more
serious reason that the performance further deteriorates —
user’s finger (also the wearable) usually moves following a
curve in the air between two keystrokes. From our exper-
iment, we find as the moving trace becomes more curved,
the accuracy keeps degrading. As our finger’s moving trace
normally has a curved level with a height between 1cm (T1)
and 3cm (T2) as in Fig. 2(a) in the typing, e.g., about 27%
amplitude and 29◦ angle errors on average, it surely incurs an
unsatisfactory motion recovery. In this case, the keypad plane
may not even be reliably recovered in the first place and the
moving trajectory can also be easily distorted.

2) Variant keyboard sizes: On the other hand, the keyboard
size could vary remarkably cross different mobile platforms
[1], [2] as Table I shows. From the table, we can see that the
keyboard size could vary up to 6x and 5x times along the x
and y directions, respectively.

To give some concrete examples, we measure the keyboard
sizes for five popular mobile platforms, e.g., Samsung Galaxy
S6, iPhone 7 plus, a metal ATM keypad, a numeric keypad,

and a door entrance panel. The inter-button distance could vary
up to 2.3x, which is already highly diverged even from five
examples only. In this attack, without knowing the keyboard
size, even the moving trajectory was precisely derived finally,
the typed information is still not decodable, because the correct
decoding (or matching) reference is lacking.

Category Range of x (horz.) Range of y (vert.)
Mobile devices 16 ∼ 91 19 ∼ 45

Numeric keypads 23 ∼ 53 22 ∼ 23
ATMs / POSs 29 ∼ 35 18 ∼ 38

Door entrance panels 15 ∼ 28 30 ∼ 97

TABLE I: The feasible x and y ranges between two adjacent
buttons cross different mobile platforms (unit: mm).

III. SYSTEM DESIGN

In this section, we elaborate three core component designs
in aLeak to address above challenges, including 1) wearable’s
moving trajectory recovery in §III-A, 2) keyboard size deriva-
tion in §III-B, and 3) typed information inference in §III-C.

A. Moving trajectory recovery

This component converts wearable’s motion data, e.g., ac-
celerometers and gyroscope, to its moving trajectory along
the keypad plane, with three steps. We first divide the highly
dynamic-varying motion data into segments for deriving wear-
able’s displacement vectors (in §III-A1). Then we migrate
the motion data inaccuracy issue to precisely derive keypad’s
unknown posture, such that wearable’s moving trajectory on
the keypad can finally get recovered (in §III-A2).

1) Motion data segmentation: Acceleration data1 {ai} se-
quence should be first divided into segments, and each segment
corresponds to one piece of wearable’s displacement vectors.
In other words, {ai} needs to be partitioned at the moments of
keystrokes. However, due to high dynamic acceleration vary-
ings and inevitable jitters, we find how to first automatically
and reliably identify these delimiters becomes not so trivial.

Keystrokes could incur prominent acceleration changes [13],
e.g., {||~ai||2}, as the (green) circles marked in Fig. 3(a). There-
fore, one natural attempt is the adoption of thresholds, but we
find that the keystroke strength is highly user-dependent, which
may even vary substantially for the same user, e.g., typing on
different devices or with different keypad postures. Moreover,
some acceleration peaks due to dynamics and jitters could
also have very large strengths, e.g., the triangle after “Click
3” in Fig. 3(a). A universal cutting off is thus hardly to be
determined using the threshold.

To cope with this issue, we find that the password typing
is normally fluent and rapid (e.g., the user is familiar with the
password), which leads to a relatively stable typing pace. This
inspires us to look at the set {ai} in the frequency domain to
identify the dominating frequency ftype, as Fig. 3(b) depicts,

1The hacked raw accelerations {acci} are in wearable’s coordinate system.
They are converted to a global coordinate system by referring to the concurrent
gyroscope readings [14] and we denote the converted accelerations as {ai}.
This global coordinate system may have a fixed offset along the horizontal
plane with the earth coordinate system, but it has no impact to aLeak design.
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Fig. 3: Motion data segmentation. (a) Instrumental example.
(b) FFT on {ai} to extract user’s typing pace. (c) Typing pace
extraction from 5 finger transitions with 2 being prolonged. (d)
Acceleration peaks are small when the finger hangs in the air.

which corresponds to the average time interval tpace between
two keystrokes, e.g., the typing pace. As a result, we have:

tpace = 1/ftype. (1)

From Fig. 3(a), we can see that all keystrokes occur at
the acceleration peaks and they are also greater than their
neighboring peaks (from both left- and right-hands). These two
criteria can exclude many weak “competitors”, e.g., the (red)
dot peaks in Fig. 3(a), and we denote the remaining peaks as a
set {pj}, which contains both the accelerations for keystrokes,
e.g., the circles in Fig. 3(a), and the strong “competitors”, e.g.,
the triangles in Fig. 3(a). Now, the interval tpace in Eqn. (1)
could further provide a proper temporal duration to filter out
these strong competitors by comparison in Algorithm 1, since
they are relatively small compared with adjacent keystrokes.
As ttype is an average typing pace, in line 6 of the algorithm,
we provide a margin α for the comparison, where α is set as
0.75 empirically in our current aLeak implementation.

Even the user may suddenly stop during the typing to recall
the next password character (in case it is forgotten), as long as
the typing pace still dominates, these prolonged delays could
not impair the overall frequency behavior, as Fig. 3(c) shows,
where 2 out of 5 finger’s movings are prolonged. However,
in this case, some peaks within the prolonged typing intervals
might be mis-detected as keystrokes, e.g., the marked yellow
triangle within tab in Fig. 3(d). Nevertheless, fortunately, the
accelerations within such a prolonged duration are very small,
as the finger is relatively stable when it is hanging in the air.
We can thus filter out all the peaks near zero (e.g., less than
5% of the largest peak) in {pj} first before using Algorithm 1.

After Algorithm 1 completes, we denote its returned acceler-
ations as {sj} and these items correspond to the keystrokes. By
viewing each sj as the delimiter, we can divide the original ac-
celeration sequence {ai} into segments. By applying double-
integral with mean-removal to all ai from each segment, we
can derive its displacement vector, ~vl. Note that all vectors
{~vl} are in the same absolute coordinate system as {sj}.

2) Wearable moving trajectory: With the segmented motion
data, the next task is to further cope with its inaccuracy issue
to precisely derive keypad’s unknown posture, e.g., the angle

Algorithm 1: Keystroke Identification

1 input: peak set {pj}; calculated ttype from Eqn. (1);
2 output: keystroke set {sj};
3 while the size of {pj} changes do
4 for each item in {pj} do
5 calculate the time interval t to the next item;
6 if t < α · ttype then
7 remove the item with a smaller amplitude;

8 return {sj} ← {pj};
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Fig. 4: Keypad plane reconstruction. (a) CDF of keypad
plane reconstruction errors. (b) Estimation of the ~eK direction.

between the keypad and horizontal planes as the θ shown in
Fig. 1(a), such that wearable’s moving trajectory along the
keypad plane can be recovered.

As we have derived each vector ~vl, one natural solution is
to construct an interpolated plane, by minimizing the average
distance to each ~vl by the least square, as the keypad plane.
However, due to the inaccuracy of ~vl (for both the amplitude
and angle errors as unveiled in Fig. 2), the plane reconstruction
performance is not satisfactory, e.g., the 80th percentile error
is 34.4◦ and it can be up to 60.3◦ in Fig. 4(a).

To migrate the inaccuracy from ~vl, we observe a keystroke
involves two consecutive but opposite finger movements along
the perpendicular direction (~eK) of the actual keypad plane
(K), e.g., touching on and then releasing from the key-
pad. Thus, wearable’s acceleration changes are maximized at
keystrokes, e.g., the moments of each item in {sj} returned
from Algorithm 1, along the ~eK direction. Hence, instead of
figuring out K from the less accurate {~vl}, we can leverage
{sj} to approximate ~eK first. As each acceleration reading sj
is read from the sensor directly without any integral operations
to cumulate errors, the derived ~eK from {sj} is more reliable
and accurate than K directly from {~vl}. With a high-quality
~eK, precise keypad plane K can be trivially obtained as they
are perpendicular to each other.

Fig. 4(b) shows that the items in {sj} could be diverged
within a small cone-like uncertainty range. We can thus find
the best ~eK by maximizing the accelerations at the moments
of keystrokes along the final ~eK:

max~eK∈cone
∑

l
||g(sj , ~eK)||2,
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where g(sj , ~eK) represents to project sj to the ~eK direction. In
Fig. 4(b), we see that the 80th percentile and maximum errors
of this design can be reduced to 12.2◦ and 17.9◦, respectively.

After the posture of keypad plane is determined, for each
vector ~vl, its displacement along keypad’s perpendicular direc-
tion ~eK should be zero. However, due to the sensing error, the
obtained result is usually non-zero, e.g., dres. Hence, for each
vector ~vl, we can calibrate all its accelerations by a factor c,
such that the double-integral of {c} generates “−dres” along
the ~eK direction, to cancel out the non-zero residual displace-
ment. This essentially applies the mean-removal again for the
~eK direction merely. Using these calibrated accelerations, the
newly derived vectors ~ol will have an improved accuracy and
automatically become co-planed on K. The set {~ol} is thus
the wearable’s moving trajectory, where each ~ol is one of
wearable’s displacements along the keypad plane K.

In Fig. 5(a) and (b), we examine the accuracy of derived
{~ol}. The result shows that both the amplitude and angle ac-
curacies are improved, especially for the angular performance,
e.g., 17◦ error on average. We find the angle errors are more
crucial and sensitive to the end performance, as they can easily
distort the trajectory’s shape, e.g., as Fig. 5(c) depicts.
Summary. By solving the inaccurate motion recovery issue,
this component converts wearable’s motion data to its moving
trajectory, represented by vectors {~ol} along keypad plane K.

B. Keyboard size derivation

This component derives the unknown keyboard size, which
is represented by the x and y values. We take the most widely
adopted 4×3 grid layout as a main instrument to elaborate our
design, which in fact can be extended to other grid layouts.

1) The key observation: Although the keyboard size may
vary cross platforms, we find that once a user types on one
keyboard, the recovered moving trajectory implicitly owns the
keyboard size information, based on the following observation.
Observation. If one vector in trajectory {~ol} is supposed to
be parallel to one of keyboard’s axises, e.g., if no errors, vector
~o1 is supposed to be parallel to keyboard’s y-axis in Fig. 6(a),
after we project all other vectors to this direction (nearly the
y-axis) and its perpendicular direction (nearly the x-axis), their
projected lengths should be approximately integral multiples
of the keyboard size y and x values, respectively. Fig. 6(c)
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displays all possible integral multiples in principle when one
vector is projected to these two directions.

We name such a baseline vector for projection, e.g., ~o1, the
reference vector. In fact, every vector in the moving trajectory
could be a reference, while we call a reference to be qualified
if it is supposed to be parallel to one of keyboard’s axises.
Fig. 6(b) shows the projected lengths of all other vectors to
the qualified reference ~o1’s own direction (y-axis)2. However,
from each projected length, we cannot derive the keyboard size
y yet, because each exact integral multiple value is unknown,
the projected lengths and the reference vector itself both
have errors. In the following, we first address this issue, and
postpone the discussions: 1) unawareness of which references
are qualified, 2) even no qualified references exist, afterwards.
Solution. We essentially view all the projected lengths as the
constraints and then search for the most likely keyboard size
x and y pair with a best match to these constraints.

For a reference vector, e.g., ~o1 in Fig. 6(a), after all other
vectors are projected to its own or perpendicular direction, we
can form a matrix-like structure. Fig. 7(a) depicts the structure
for ~o1’s own direction (y-axis), where columns correspond to
all projected vectors, following a decreasing order based on
their projected lengths, and each row represents one possible
integral multiple value. The last row of “.1y” handles the case
that a vector itself, e.g., ~o5, is (nearly) perpendicular to the
reference, with a very small projected length. Fig. 7(a) is for
deriving the keyboard size y, and a similar structure can also be
built for the projection of these vectors to ~o1’s perpendicular
direction (x-axis) for deriving keyboard size x.

In Fig. 7(a), we adopt tij to indicate the circle in row i and
column j. Between any two adjacent columns, we can draw
an edge, e(tij , t

i′

j+1), to connect tij and ti
′

j+1. In addition, we
can further form a path from the first column to the last using
connected edges, and each path indicates one allocation of the
integral multiple values for each projected length. For instance,
for the path in Fig. 7(a), “2y” is allocated to both ~o3 and ~o4.
Therefore, the keyboard size y derived from ~o3 and ~o4 are

2In a real attack, we are not aware how large each vector’s error is at this
moment. So once a vector is selected as the qualified reference, we view it
to be error-free, e.g., along x- or y-axis. Inaccuracy from this approximation
will be finally reflected from the quality of derived keyboard x and y values.
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y3 = 23
2 = 11.5 and y4 = 21

2 = 10.5, respectively, and the ~o2

leads to y2 = 12. Therefore, the keyboard size y determined
from this path is y = y3+y4+y2

3 = 11.3. Note that the vectors
allocated with “.1y” are not used in deriving y as the factor
“0.1” is an approximation merely, which is sufficient for the
path selection (since it brings all paths the same inaccuracy)
but not accurate enough to derive the value of y.

Since different paths lead to different allocations, our target
is naturally to select the path achieving the best allocation. To
quantify their differences, we define a weight for each edge:

w(tij , t
i′

j+1) = | len(cj+1)

len(cj)
− len(ri′)

len(ri)
|, (2)

where len(cj) is the projected length of the vector at column
j and len(ri) is the represented allocation for row i.

A path weight can be further defined by adding the weights
over all its edges. The path weight measures the consistence
between the derived vectors’ lengths and one allocation of the
integral multiple values. A smaller weight indicates a higher
likelihood of this allocation’s (path’s) correctness. Hence, we
can use the dynamic programming to derive the best allocation.

With above design, for any reference vector ~or, where ~or ∈
{~ol}, we can define a pathSearch(~or) function as follows:

Step 1: Assume ~or along x-axis, e.g., denoted as ~or(x), and
project all other vectors to both this direction (x-axis) and its
perpendicular direction (y-axis) for deriving the best keyboard
values: x1 and y1 (with the minimal path weight for each).

Step 2: Repeat Step 1 by assuming ~or along the y-axis,
e.g., denoted as ~or(y), and obtain another pair: x2 and y2.

Step 3: Return (x1, y1) with ~or(x), and (x2, y2) with ~or(y).
Although one x and y pair must be less accurate or even

wrong, we do not examine its correctness at this stage. Instead,
we adopt both x and y pairs to infer the typed information and
they are differentiated automatically by our design in §III-C.

2) Reference selection and generation: So far, we introduce
how to derive keyboard size x and y from a qualified reference
vector. However, in a recovered moving trajectory {~ol}, we
are not aware each vector is qualified or not at this moment.
Therefore, we need to apply pathSearch(·) for each ~ol vector.
If some of them are indeed qualified, they will generate the
most likely x and y pairs. Again, their correctness will be
automatically differentiated after each x and y pair is applied
for the typed information inference in §III-C.

On the other hand, it is also possible no qualified references
exist in the moving trajectory, like Fig. 7(b). We find that in
this case, if we connect the starting point of each vector to
the end point of the next adjacent vector (forming a triangle),
and also connect the starting point of the first vector to the
end point of the last vector, qualified references will appear for
sure in these newly added lines when at least 4 characters exist
in the password. However, triggering this new line supplement
mechanism will double the computation overhead. To wisely
make the decision, the “keyboard size derivation” component
works as follows:

1) We first apply the pathSearch(·) function for each ~ol

in the moving trajectory, and select the x and y pair with the
minimum path weight, e.g., the most likely allocation.

2) For either its x- or y-axis, if half of the x or y values,
derived from the projected vectors at each row or column
individually (e.g., the three y values derived from ~o3, ~o4 and
~o2 in Fig. 7(a)), exhibit a large difference, e.g., their mutual
differences all > 50%, the new line supplement is triggered.

3) All newly added lines are denoted as {~nk} and we apply
the pathSearch(·) function for each ~nk to generate more
keyboard size x and y pairs.
Summary. This component outputs a series of x and y pairs
and each pair’s reference vector ~or(u) with direction u, where
u indicates x- or y-axis.

C. Typed Information Inference

In this component, we match the moving trajectory {~ol}
with each guessed keyboard layout size to infer user’s typing.

1) Position of reference vector: Since the trajectory shape
is determined by all the displacement vectors already and the
orientation of the reference vector w.r.t. the keyboard is known,
e.g., ~o1(y) is along the y-axis in Fig. 8(a), if we can further
determine the right position of ~o1(y)’s starting point (e.g., on
which button), the entire trajectory can be correctly overlaid
onto the keyboard. For instance, if we know the starting point
of reference vector ~o1(y) is on button “9” in Fig. 8(a), we can
infer sequence S = “934056′′ as the result, as it minimizes
the average error ES compared with other candidates:

ES(b) = min
S
{ 1
L
×

∑L

i=1
ei}, (3)

where b is the starting button position for the reference vector,
L is the number of vectors, e.g., b = 9 and L = 5 in Fig. 8(a),
and ei is the distance between the ending point of each vector
~oi and the center of one button.

In fact, starting from any button b, we can always derive a
sequence by minimizing Eqn. (3), which however tends to an
incorrect result if b is wrongly selected. We of course could
go through each possible b and then prioritize all the inferred
results based on ES(b)s. This ambiguity however is expected
to be alleviated in the first place; otherwise such an exhaust
search will be performed for all keyboard size x and y pairs.

2) Ambiguity removal: We leverage the lengths from the
projected vectors in the keyboard size derivation (in §III-B) as
a hint to restrict b within a very limited range on keyboard.
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For a reference vector, e.g., ~o1(y) in Fig. 8(a), we know its
orientation w.r.t. the keyboard, which is along the y-axis. We
propose to place ~o1(y) along the same direction (y-axis) of
another coordinate system and move its starting point to this
coordinate system’s origin, as Fig. 8(b) shows. We next project
all the vectors, including the reference vector itself, to this y-
axis, to first determine on which row the right b, denoted as b̃,
should be. We write the largest positive (or zero) and smallest
negative (or zero) projection values as yp and yg , respectively,
and calculate:
• np = round(yp/y), indicating np rows are above b̃ on

the keyboard, e.g., b̃ is at least on the (np + 1)th row.
• ng = round(−yg/y), indicating ng rows are below b̃ on

the keyboard, e.g., b̃ is at most on the (ng+1)th last row.
For instance, in Fig. 8(c), np = round(yp/y) = 2 and ng =
round(−yg/y) = 1, which limits b̃ on the third row. Similar
calculations are also performed for the x-axis, which further
limits b̃ on the third column. Although b̃ sometimes cannot
be uniquely identified, but it is already within a very limited
range. In this case, we can utilize Eqn. (3) to prioritize the
inferred results, e.g., a smaller ES(b) leads to a higher priority.

On the other hand, if the inferred sequence contains num-
bers from 1 to 9 only, e.g., Fig. 9(a-up-left), another sequence,
by rotating the keyboard 180◦, has the same ES(b) value, e.g.,
Fig. 9(a-up-right). In addition, if x = y, two more sequences
in Fig. 9(a-down) also have same ES(b) values. Therefore, we
need to further remove such ambiguity. We observe that when
the user is typing, wearable’s coordinate system (after rotating
90◦) has a similar orientation as keypad’s as in Fig. 9(b). Our
key idea is to use the four sequence candidates in Fig. 9(a) to
generate their own moving trajectories in the same coordinate
system as the one recovered from the wearable. We can
then conduct inner-production to identify the most likely one.
Moreover, aLeak can also handle cases that there is no “enter”
button on the typed keyboard (details are omitted).

IV. PERFORMANCE EVALUATION

Experiment setup. We develop a prototype system of aLeak
based on previous designs and examine its performance in this
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Fig. 9: Ambiguity removal. (a) Ambiguous results with same
ES(b) error. (b) Using coordinates’ similarity to differentiate.

section. We experiment with 5 users wearing LG W150 smart
watch and act as the adversary to attack more than 300 rounds
of users’ password inputs on four common types of keyboards,
including: 1) an POS terminal, 2) an entrance guard panel, 3)
a telephone dial pad and 4) the virtual keyboard on iOS. The
keyboard size varies from 14mm to 21mm (for x) and 10mm
to 21mm (for y), and their posture angle changes from 0◦ to
90◦ in the experiment. We also vary the sampling rates of the
3-axis accelerometer and gyroscope data from 30Hz to 200Hz.

To validate the efficacy of our design, we compare aLeak
with the state-of-the-art approach RCCS [13]. The attack in
RCCS assumes a horizontal keypad plane and it also requires
1) the known keyboard size and 2) the last keystroke on a
fixed “enter” button to enable the attack. We explicitly provide
such two pieces of information for RCCS, while aLeak is not
aware of any context information. Some keyboards used in the
experiment have no “enter” button. In this case, we provide
the ground truth of the last keystroke as “enter” for RCCS.

Successful rate. After attacking each piece of user-typed pass-
words, aLeak and RCCS both can provide a set of candidate
inferences ordered by the likelihood. In Fig. 10, we examine
their successful rates from top-1 (i.e., the candidate with the
highest likelihood is just the user-typed password) to top-5
candidates (i.e., the password is in the first five candidates).
In this experiment, keyboards’ posture includes all possible
angles from 0◦ to 90◦ with a step size of 10◦. For each posture
angle, we attack a similar amount of users’ typings.

From the result, we can see that even top-5 successful rate of
RCCS is 15% merely, which is mainly achieved when keypad
plane is close to be horizontal (as it assumes). In contrast,
aLeak can achieve 94% top-5 and even 45% top-1 successful
rates without any context information. The improvements are
gained from 4.8x to 5.3x. Fig. 10 essentially demonstrates
the severity of user’s typing leakage risk unveiled in aLeak,
since when a user types on many mobile platforms in practice,
e.g., mobile phone or POS terminal, even the context-aware
assumption does not hold usually, e.g., with an arbitrary
unknown posture angle, aLeak shows that user’s typing can
still be possibly leaked through wearable’s motion sensors.
This should draw our great attention for the typing on mobiles.

Recovered context information. As aLeak does not assume
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context-related information, its performance highly depends on
the accuracy of the recovered keypad postures and keyboard
sizes. In Fig. 4 (on p. 4), we have demonstrated that aLeak can
achieve a good keypad posture recovery, e.g., the average error
is less than 7◦. In this section, Fig. 11 further indicates that the
accuracy of the derived keyboard sizes by aLeak is accurate as
well. Compared with the measured ground truth, the average
keyboard size derivation error is 4.0mm for x (4.6mm for y)
and the 80th percentile error is 6.7mm for x (8.1mm for y).
As the keypad posture error has a more significant impact on
the y-axis, the error of y is slightly larger than x in Fig. 11. In
summary, experiments show the good performance achieved
from both of these two aspects, which ensures aLeak’s high
successful rates in Fig. 10.

In Fig. 12, we further investigate aLeak’s performance loss
due to the keypad posture and keyboard size recovery errors.
We first repeat all previous attacks by providing the ground
truth of the keypad posture (but the keyboard size is still
derived by aLeak). The result shows for the top-1 accuracy,
the keypad posture error leads to 15% performance loss, while
its impact on the top-5 rate becomes minimal. This is another
indication that aLeak’s keypad posture recovery is accurate.

We then repeat the experiment again with the ground truth
of keyboard size only. We notice that the performance even de-
grades. Through our investigation, we find that this is because
wearable’s moving trajectory is slightly different from finger’s
moving. Thus, the derived result by aLeak is essentially the
desired (and effective) size that matches wearable’s movement.
Different keypad posture angles. In Fig. 10, we have shown
aLeak’s overall performance. In Fig. 13, we further provide its
detailed performance under different keypad posture angles.
For the ease of illustration, we group these angles into three
ranges: 0◦ ∼ 20◦, 30◦ ∼ 60◦, 70◦ ∼ 90◦, and depict the
performance for each range. From the result, we observe that
when the posture angle is closer to 0◦, the performance tends
to be better, e.g., 57% vs. 30% for the top-1 accuracy in the
first and third ranges, respectively. However, the performance
of aLeak in general is comparable in the three ranges, e.g.,
successful rate differences between the first and third ranges
reduce to 13.6% and 0.3% for the top-3 and top-5, respectively.
Different keypads. In Fig. 14, we plot aLeak’s performance
achieved on four different (three physical and one virtual)

keypads, where the keyboard size x and y varies from 14mm
to 21mm and 10mm to 21mm, respectively. Overall, aLeak
achieves similar performance cross different keypads. The
top-1 successful rate varies from 36% to 57%, and there
is no obvious difference for the successful rate from the
top-5 candidates. The reason that the top-1 performance on
the second keypad is slightly worse because this keypad is
relatively aged, such that the buttons become soft and not very
responsive. Hence, the signal-to-noise ratio of the accelerations
observed from this keypad is relatively lower than the other
three. Nevertheless, its (absolute) successful rates are still high.
Different motion data sampling rates. Although wearable
device could sample motion data at a high rate, e.g., 200Hz,
the effective sampling rate achieved by the adversary might
be much lower [13]. From Fig. 15(a), we observe that this
side-channel attack is robust to the sampling rate reduction.
Even the rate is reduced to 30Hz (by down-sampling), the
achieved successful rates are comparable to the high sampling
rates, e.g., 200Hz and 50Hz, for all numbers of top candidates.
Fig. 15(a) essentially implies that the barrier to launch this
attack is trivial, consistent with the observations from prior
studies [8], [13]. In this experiment, we have tried to further
lower the sampling rate and found that after the rate is lower
than 10Hz, the system cannot provide meaningful outputs.
Different users. In Fig. 15(b), we further plot the performance
achieved on different users. From the result, we can see that
their top-1 successful rates are slightly scattered around 50%,
while their top-5 successful rates are all very high. Fig. 15(b)
indicates that aLeak can achieve an effective wearable side-
channel attack on different users.

V. RELATED WORK

Privacy leakage by wearable motion sensors. Some existing
efforts [13], [14], [8] demonstrate the initial success of the
keystroke leakage through wearable’s motion sensors. MoLe
[14] leverages a linguistic model to infer the English word
typing on computers keyboards. Liu et al. [8] report the pass-
word leakage on POS terminals and cope with the inaccurate
motion data using a machine-learning based approach, which
however requires the training and known keypad plane in
prior. Wang et al. [13] further release the training requirement
and propose a backward inference method to migrate the
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motion data inaccuracy. These recent successes however are
achieved under certain known contexts about user’s typing:
1) the horizontal keypad plane, 2) the known keyboard sizes,
e.g., the ATM or POS panels, 3) and/or the last keystroke on a
fixed “enter” button. In this paper, we take one step further by
addressing unsolved challenges to demonstrate the possibility
that leaks user’s typing privacy in much more general context-
free scenarios, so as to unveil (more importantly alarm people)
the further privacy leakage risks that are not viable before.

Privacy leakage by other side-channels. Some other side-
channel attacks to user’s typing privacy are also studied in the
literature. In particular, the user’s typing on mobile platforms
can be compromised by ambient cameras, where Wu et al.
[15] study such a camera-based attack on mobile phones and
Ye et al. [18] report to crack the Android pattern lock in
five attempts. In addition, recent studies find that the user’s
typing privacy can be leaked by the wireless mouse trajectory
[10] as well. On the other hand, the user’s typing on mobile
devices can also be compromised by mobile’s own sensors,
e.g., the keystrokes on touch screen can be inferred from
motion sensors [3] and gyroscope can be used to unveil the
fingerprints of user’s typing [9]. These existing works are
essentially orthogonal to this paper, which do not address the
unique challenges in the aLeak design.

VI. CONCLUSION

This paper presents aLeak, which fully demonstrates, more
importantly alarms people, a crucial typing privacy leakage
risk in much more generalized context-free scenes that are not
viable before. We address the inaccurate motion recovery, un-
known keyboard size and inference ambiguity three unsolved
challenges in the aLeak design and develop a prototype system
to validate its feasibility. Extensive experiments by attacking
more than 300 rounds of different users’ typings without the
context information indicate the efficacy of aLeak.
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