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Abstract—Mobile sensing is a promising sensing paradigm that
utilizes mobile device sensors to collect sensory data about sensing
targets and further applies learning techniques to recognize the
sensed targets to correct classes or categories. Due to the recent
great success of deep learning, an emerging trend is to adopt deep
learning in this recognition process, while we find an overlooked
yet crucial issue to be solved in this paper — The size of deep
learning models should be sufficiently large for reliably classifying
various types of recognition targets, while the achieved processing
delay may fail to satisfy the stringent latency requirement from
applications. If we blindly shrink the deep learning model for
acceleration, the performance cannot be guaranteed. To cope
with this challenge, this paper presents a compact deep neural
network architecture, namely cDeepArch. The key idea of the
cDeepArch design is to decompose the entire recognition task
into two lightweight sub-problems: context recognition and the
context-oriented target recognitions. This decomposition essen-
tially utilizes the adequate storage to trade for the CPU and
memory resource consumptions during execution. In addition,
we further formulate the execution latency for decomposed deep
learning models and propose a set of enhancement techniques,
so that system performance and resource consumption can be
quantitatively balanced. We implement a cDeepArch prototype
system and conduct extensive experiments. The result shows that
cDeepArch achieves excellent recognition performance and the
execution latency is also lightweight.

I. INTRODUCTION

Due to the increasing popularity of mobile devices recently,
e.g., smart phones, watches and glasses, together with their
equipped rich on-board sensors, like cameras, accelerometers,
gyroscopes, wireless modules, etc., mobile sensing nowadays
emerges as a promising sensing paradigm in a variety of useful
application designs [26], [40], [37], [35], [8]. Although their
proposed technical details can be dramatically different from
one application to another, most of them share a common
design principle — utilizing mobile sensors to collect sensory
data about the sensing targets and further applying learning
techniques to recognize or classify the sensed targets to correct
classes or categories to fulfill the application needs [29], [34].

For instance, cameras from smart glasses or smart phones
can capture the first-person view of a user [11], so that user’s
ambient context or the objects captured in the video stream can
be inferred and recognized. With such a capability, cognitive
aid systems [14], [7] can be developed, where the recognized
objects can be used to assist the patients of cognitive decline,
e.g., the loss of object and location recognition abilities.
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The context and object recognition abilities can also enable
the Augmented Reality (AR) applications [11], [14], [12].
Following this similar design principle, motion sensors, e.g.,
accelerometers, gyroscopes and compass, can sense users
themselves and then recognize their daily activities in plenty
of fitness and e-health designs [21], [5].

As the hardware manufacture of on-board sensors is mature,
one major factor that dominates above mobile sensing and
recognizing performance is the learning techniques adopted
to convert the sensory data to the corresponding classes. The
traditional machine learning largely relies on the man-crafted
features extracted from the data, which highly depends on the
quality of the feature selection and the resulting performance
is thus known not accurate and reliable enough [29].

The recent great success of deep learning [18] can perfectly
avoid such limitations and already demonstrates its strength in
many computing fields. Moreover, there are also early attempts
made to leverage deep learning to augment the mobile sensing
application designs [11], [21], [34]. Although this combination
appears as an emerging and promising trend in the community,
in this paper, we find the following overlooked yet crucial issue
that challenges such an integration and therefore fundamental-
ly limits its end performance:

The amount of recognition targets of deep learning in above
applications is normally large, e.g., many daily objects and
activities need to be recognized in the cognitive aid [14], [7]
and fitness systems [21], [5] respectively, one simple solution
to classify such excessive targets is to adopt a very deep neural
network [23], [27], but this will naturally lead to huge training
and execution latency. More importantly, prevalent processing
platforms in our daily life, e.g., the sensing data are offloaded
to nearby desktops or laptops for the processing [7], may not
fully afford such an overhead to satisfy the stringent latency
requirement from applications (in the next section, we will
further show that offloading to remote clouds can be also
insufficient), e.g., completing within 300ms to avoid obvious
visual lags [12]. However, if we blindly shrink the deep
learning models (e.g., size and depth), the sensing results could
become unreliable and inaccurate, e.g., the shrunk model is not
able to provide sufficient sensing capabilities to distinguish too
many recognition targets. On the other hand, there also lacks
a quantitative measure to tell whether the reduced resource
consumption really satisfies the available resource conditions
for the execution.

To address these challenges above, we propose cDeepArch
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in this paper based on the following insights:
1) If we design a generic neural network model for recogni-

tion, the search space is naturally huge and the deep learning
model cannot be small, but in cDeepArch, we observe that
we can decompose the entire recognition task into two sub-
problems: context recognition and the context-oriented target
recognitions (e.g., for the objects or activities). As the contexts
of a user are normally limited in daily life, we can first design
a compact deep learning model for context recognition. Once
the context information is identified, the candidate set of the
targets to be recognized (associated to this context) will be
largely restricted and another compact model will be sufficient
for the final target (e.g., objects or activities) recognitions.

2) This decomposition essentially utilizes the storage (ade-
quate on most computing platforms) to trade for the execution
efficiency, e.g., breaking one huge and expensive deep learning
model into a series of lightweight compact network models
under different contexts, so that each compact model merely
handles a small subset of objects or activities. To further man-
age the execution overhead of each compact model to fit for
different platforms, we find that the amount of computations
of a deep learning model can be mathematically described.
By doing this, we can quantitatively “configure” the network
model, so that the model size can be maximized according to
the resource conditions on the platforms (as its sensing ability
generally improves with a larger and deeper model design) and
the end performance of recognition can thus be well prompted.

In summary, the contributions of this paper are as follows.
1) We propose a compact deep neural network framework,

which decomposes mobile sensing and recognition tasks into
two sub-problems, so that compact deep learning models can
be comfortably deployed on the resource-lean platforms. In
particular, we adopt the first-person video (for the context and
object recognitions) and convolutional neural network (CNN)
as concrete instances to instrument the design of cDeepArch,
while the principle can be flexibly extended to other types of
sensing data and deep learning models as well.

2) We mathematically formulate the execution latency of the
compact neural network model, in terms of floating point com-
putations. The derived formulation can quantitatively guide us
to configure the detailed network model size. By doing so, we
can obtain a largest model according to the resource conditions
from the execution platforms (for maximizing its sensing
capability), so as to prompt (together with other our proposed
enhancement techniques) the end recognition performance.

3) We develop a prototype system of cDeepArch and con-
duct extensively experiments using public data set Cifar10
and Cifar100 [15]. The results indicate that the execution
overhead of cDeepArch is lightweight, e.g., the average time
to recognize an object or context is about 75ms merely. In the
meanwhile, it can also achieve very good context and object
recognizing performance.

The rest of this paper is organized as follows. We introduce
the design preliminary and overview in Sec. II and elaborate
the design details of cDeepArch in Sec. III. We implement and

Resolution (hori. × vert.) Video Size (MBps)

3840× 2160 6.01

1920× 1080 1.99

1280× 720 0.98

TABLE I: The measured video sizes under different resolu-
tions with 30 frames per second on iPhone 7 Plus.

evaluate cDeepArch in Sec. IV. Related works are reviewed
in Sec. V before we conclude in Sec. VI.

II. DESIGN PRELIMINARY AND OVERVIEW

In this section, we introduce the preliminary and overview
of our cDeepArch design, including its potential applications,
analysis of existing countermeasures to the key design issues,
our design goals and the system architecture of cDeepArch.

A. Potential applications

Executing deep learning on mobile devices could enable
plenty of useful mobile sensing oriented application designs.
As aforementioned in Sec. I, in this paper we will focus on
the first-person video captured from camera of mobile devices,
which can produce at least the following two potential system
designs. Of course, if other types of sensing data are adopted
[38], [36], more diversified usage can be enabled as well, such
as e-health, fitness, etc.

Cognitive aid system: Cognitive decline is a serious disease
for the elderly people, which could cause patients the loss of
object and location recognition abilities [2]. As such patients
may still be able to understand the very basic signal inputs,
e.g., simple textual words or sounds, the general solution is to
translate the to-be recognized objects, people or locations into
their understandable formats to assist them directly. To enable
such a design, the camera amounted on mobile devices, e.g.,
Goolge glass, can capture the first-person view of the patient
and the recorded video stream is offloaded for processing by
deep learning models for various recognition tasks. Once the
recognition is completed, results are sent back to patients in a
proper manner, e.g., displaying words or playing a sound.

Augmented reality (AR) system: AR is a live direct view of
the physical world through the camera of a mobile device [12].
By intelligently processing the captured first-person video,
digital annotations pop out promptly on the screen when the
camera is pointed to an object that the user is interested in.
For instance, pointing the device to the steak in supermarket
receives the tips for cooking and product reviews, and looking
at a shopping mall pops up popular restaurants in the building
and customers’ ratings. In addition, the user can also actively
contribute new annotations for updating the AR background
database. This tantalizing physical-world viewing capability
brings an emerging interface for human-ambiance interactions.

B. Existing countermeasures

Although deep learning is capable to extract ample features
from the video frames to conduct precise and reliable recogni-
tion tasks for above applications, as stated in Sec. I, the set of



Instance Processor vCPU Memory(GiB) Price($/h)

c4.large CPU 2 3.75 0.1

c4.2xlarge CPU 8 15 0.398

g2.2xlarge GPU 8 15 0.65

TABLE II: The pricing for three Amazon AWS instances.

the recognition targets is normally large. This naturally incurs
a very large and deep network model design, which is however
non-trivial to be processed efficiently. To cope with this issue,
the widely adopted countermeasures propose to migrate the
heavy computations to the remote clouds, e.g., Amazon Web
Services [1]. However, we find that such countermeasures
suffer at least the following limitations and drawbacks:

1) Long and uncontrollable transmission latency: As the
data volume of video frames is relatively large, the latency to
transmit video frames to remote clouds could incur unsatisfied
delay performance. To unveil this point, we measure the video
frame size using an iPhone 7 Plus in Table I. The first column
lists three typical video resolutions. For each resolution, the
second column is the corresponding video size, which varies
from 0.98MBps to 6.01MBps.

If we use the ubiquitous cellular access technique, e.g., 4G
and LTE, to transmit video frames, the video resolution to
be supported can be highly limited, e.g., the average upload
speed of 4G is about 1MBps [3]. More importantly, the service
costs will be high as well, which could remarkably prohibit
the wide adoption of the upper-layer applications in practice.
Other techniques may alleviate this issue, e.g., low-power
wireless [13] or Wi-Fi. However, low-power wireless’s data
rates are usually low [30]. Wi-Fi has sufficient data rates, but
recent studies find that its delay performance can be unreliable,
e.g., uploading a single frame of size 1Mb can even reach
6 seconds over Wi-Fi [4]. In summary, although clouds are
capable to accommodate expensive computations to execute
deep learning, the long and unreliable latency to transmit video
frames limits its applicability and usability in practice.

2) Service cost: Using remote clouds may also incur an extra
service cost. For example, Table II lists the prices of three
Amazon AWS instances and their resource parameter values
in December of 2017. All of them are sufficient and capable
enough to fulfill recognition tasks by CNNs, e.g., c4.large and
g2.2xlarge instances can provide second and millisecond level
responses, respectively [9]. However, the instance of the lowest
price, e.g., c4.large, can even cost over $400 per year with 12
hours usage per day, which is a heavy extra expense.

3) Potential privacy leakage: On the other hand, transmit-
ting user’s collected sensory data, e.g., video frames, image
and IMU data, to remote cloud servers can suffer potential
privacy leakage problems [24], because a mass of user-related
data is now no longer physically possessed by the end users but
available on cloud, which may expose user’s data to attackers
and introduce amounts of significant privacy concerns.
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Fig. 1: cDeepArch’s system architecture.

C. Overview of cDeepArch

With the awareness of above problems, in this paper, we
propose to leverage the cloudlet technique [25] (without extra
fees) to offload the sensing data to nearby computing platforms
and leave remote clouds as the backup when cloudlets are not
available, but we do not require any dedicated cloudlet servers
in cDeepArch. Instead, common desktops or laptops could sat-
isfy the design requirement of cDeepArch. As the computing
capability rapidly improves, we also envision cDeepArch can
directly execute on mobile platforms in the near future.

At the high level, the architecture of cDeepArch is composed
of two primary components: recognition task decomposition
and compacted neural network model management in Fig. 1.

1) Recognition task decomposition: To avoid recognize an
object within a huge candidate set using a very large and also
deep network model directly, we observe that the presenting of
objects is highly coupled with certain context information, e.g.,
desktops, books and keyboards are often in office or home,
and the contexts of a user are normally limited in daily life.
Therefore, we propose to decompose the recognition task into
two sub-problems in this component: context recognition and
context-oriented target recognition, and this component fulfills
this decomposition. In particular, this component contains a
set of compact neural network models for recognizing user’s
context information. For each context, it is further associated
with another compact neural network model for recognizing
the objects that usually appear in such context. The recognized
results can be directly used for upper-layer applications.

2) Compact neural network management: The cDeepArch
design does not assume the availability of dedicated cloudlet
servers. Instead, we leverage the available computing resources
nearby, such as desktops or laptops. As a result, even we adopt
compact neural network models in cDeepArch, we still need
to carefully control its execution cost within user’s preferred
or predefined resource budgets on such devices without impact
their regular usage. In particular, this component provides a
mathematical formulation for the execution overhead of neural
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Fig. 2: The convolution operation of one convolutional layer.

network models, based on which, we can precisely manage
the model. In addition, this component also contains a set
of enhancement modules, e.g., layer separation, late pooling
and activation function integration three major techniques, to
further augment cDeepArch’s recognizing performance (but
still satisfying the resource constraint).

III. SYSTEM DESIGN

We elaborate the design details of compacted neural network
model management and recognition task decomposition these
two components, following a bottom up order, in this section.

A. Compact neural network model management

For each compact neural network, we need to manage the
design of its convolutional layer, pooling layer and activation
function for two purposes: 1) the execution of neural network
model is within desired resource budget1 and 2) further prompt
its end performance within the resource constraint.

1) Convolutional layer design: The recent studies [11]
unveil that the convolution operation causes most of com-
putation cost in neural networks, e.g., about 80% [16], and
the majority of prior neural network model designs focus on
how to configure convolutional layers [27]. Thus, to control
the execution overhead of a neural network model, we plan to
mathematically formulate the convolutional overhead, denoted
as O, so that:

O ≤ α× B, (1)

where B is the preferred or predefined resource budget and
α is the percentage of the computations due to convolution,
e.g., we adopt 80% as the default value in cDeepArch. In the
following, we take the typical neural model structure of three
convolutional layers [19] as a concrete example to instrument
the formulation, while the principle can be easily extended to
other model structures.

Execution overhead formulation. Fig. 2 illustrates the
convolution operation of one convolutional layer. During this

1As introduced in Fig. 1, cDeepArch does not assume the availability of
dedicated cloudlet servers, which instead utilizes the available computing
resources nearby, such as desktops or laptops. Therefore, even we adopt
compact neural network models in cDeepArch, we still need to carefully
control its execution cost within user’s preferred or predefined resource
budgets on such devices without impact their regular usage.
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Fig. 3: The FLOP as a function of convolutional kernel size
(F ) and feature map amount (D), where the input is a 32×32
3-channel RGB frame.

convolution operation, the input data is an original W ×W C-
channel picture expanded P (the padding size) pixels, i.e., the
new size is (W+2×P )×(W+2×P ). The convolution kernel
with kernel size F , which moves S (the stride size) pixels each
time, is conducted convolution operation with F ×F pixels of
the original picture to generate a new pixel on the generated
Wo ×Wo feature map.

According to Fig. 2, the execution overhead of a convo-
lutional layer, in terms of FLOP (Floating-point operations),
can be formulated as follows. First, output feature map size
Wo ×Wo after the convolutional layer can be calculated as:

Wo =
W + (2× P )− F

S
+ 1, (2)

where the input size of this convolutional layer is W ×W ,
and P , F and S represent the padding size, the convolution
kernel and the stride size, respectively. Based on Eqn. (2), the
overall FLOP of this convolutional layer’s execution are:

NFLOP =Wo ×Wo ×D × (F 2 × C + 1), (3)

where D and C stand for the feature map amount and the input
channel size respectively, and number 1 is a bias factor. Based
on Eqn. (3), the execution overhead of each convolutional layer
can be thus calculated through a series of parameters, i.e.,
W,P, F, S,D,C. Among these 6 parameters, input size W and
input channel C can be obtained from the output of the former
layer (from the input image size for the first convolutional
layer). Meanwhile, the padding size P and stride size S are
usually equivalent and small across all convolutional layers
in a neural network [28], e.g., padding size and stride size
are 2 and 1 respectively. Hence, the execution overhead of
each convolutional layer mainly depends on the convolution
kernel size F and feature map amount D, which need to be
determined by us (as model designer) explicitly.

Without the execution overhead formulation, the neural
network model structure is mainly configured based on de-
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Fig. 4: Convolutional layer separation, where we separate the
first convolution layer into two concatenated sub-layers.

signer’s experience to balance the execution overhead and
the model’s accuracy — The designer selects a configuration
(based on the past experience or some public models) and then
trains the model. If the accuracy after training is low, another
configuration will be tested, which lacks a systematic way
to configure the model. On the contrary, with the execution
overhead formulation, this configuration can be quantitative
and effective as follows.

Although a model has multiple convolutional layers, e.g.,
3, their sizes are usually not the same, which lead to dif-
ferent execution overhead. Some typical percentages include
(10%, 60%, 30%) or (20%, 60%, 20%), e.g., (10%, 60%, 30%)
means the execution overhead of the three layers are 10%, 60%
and 30%, respectively. Therefore, the execution overhead of
layer i, denoted as Oi, should satisfy:

Oi = O × βj ≤ α× B × βj , (4)

where βj indicates the computation percentage of each layer,
j = 1, 2, 3 and we adopt the allocation of (10%, 60%, 30%)
as the default setting in cDeepArch.

On the other hand, based on Eqn. (3), the execution over-
head of a convolutional layer can be expressed as the function
of convolutional kernel size (F ) and feature map amount (D),
as illustrated by Fig. 3. Therefore, the constant α × B × βj
essentially defines a horizontal plane, which will intersect
with the surface in Fig. 3. These intersected positions indicate
that the layer’s size approaches to the boundary with current
F and D values. As the intersected positions may not be
unique, we still need to test and compare to finalize D and
F , but this method already restricts the feasible configuration
within a very limited range, so as to efficiently balance the
execution overhead and the end performance, which, to our
best knowledge, is never been done before.

Convolutional layer separation. Next we find an additional
opportunity to further prompt neural network’s recognizing
performance yet we still keep the execution overhead within
the resource budget. The opportunity is based on a known
principle that the recognizing performance generally improves
as the depth of the model increases [10]. We can thus separate
each layer into two sub-layers to increase model’s depth, as
in Fig. 4. However, blindly separating one convolutional layer
could also increase the execution overhead. We thus need to
carefully determine the parameters of each separated sub-layer.

1) Parameter selection. We have formulated the execution
overhead of each convolutional layer as NFLOP in Eqn. (3).

The layer separation patterns Accuracy

1 96%

2 93%

3 93%

1,2 92%

1,3 90%

2,3 87%

1,2,3 20%

Original 89%

TABLE III: The recognition accuracy of all possible convo-
lutional layer separation patterns, compared with the original
model for the object recognition.

If we can further similarly formulate for these two sub-
layers, denoted as MFLOP , we are able to use the inequality
MFLOP ≤ NFLOP to conduct the parameter selection. As a
matter of fact, there are plenty of feasible ways to configure
these two sub-layers. As a practical solution, we set their sizes
to be identical and their total execution overhead is thus:

MFLOP = 2×Wo ×Wo ×D × (f2 × C + 1), (5)

where the feature map amount D is the same as the original
one and the convolution kernal size f needs to be reconsidered.
According to the condition MFLOP ≤ NFLOP , we have:

f ≤
√

(F 2 − 1/C)/2, (6)

which means that we can configure f as b
√
(F 2 − 1/C)/2c.

Therefore, as long as the kernel size of each sub-layer is set as
this value, the layer separation can increase model’s depth, and
also keeps the execution overhead within the resource budget.

2) Separation pattern. Although model’s depth is increased,
Eqn. (6), on the other hand, also implies that the kernel size
is decreased, which may degrade the recognition performance.
To understand this new trade-off, we define 7 different sepa-
ration patterns in Table III, which contain all possibilities to
separate one, two and all three layer(s), respectively.

In this table, we utilize the object recognition accuracy to
understand the performance of each separation pattern. The
result shows that when all three layers are separated, the
accuracy becomes very low, e.g., because all kernels are small
in this case. However, when only one or two layer(s) are
separated, we indeed observe the improvement. In particular,
we find that separating the first layer only achieves the most
performance gain. The possible reason is that the first layer has
more impacts to extract the primary features from the video
frames, and the increased depth could benefit such a feature
extraction. Based on the experimental results, we separate the
first layer in the current design of cDeepArch.

2) Pooling layer design: Another important module of the
neural network model is the pooling layer, which is essentially
a down-sampling on the extracted features. The purpose of
the pooling layer is to reduce the information redundancy
and data dimensions of the features to accelerate the training
efficiency. However, pooling could also incur the loss of subtle
details from features due to its down-sampling nature. In prior
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Fig. 5: Illustration to postpone the pooling operation.

model designs, the pooling operation is applied after every
convolution layer. In cDeepArch, we find that removing the
pooling after the first convolutional layer could lead to a better
performance, as the down-sampling will not occur for the
primary features extracted from the input frames. On the other
hand, since the network model itself is compact, there is no
obvious impact on the overhead. Our experimental result in
Section IV shows that this strategy can effectively improve
the recognition accuracy.

3) Activation function design: In addition to the model’s
structure, e.g., convolutional and pooling layers, the activation
function also influences the recognition performance. In the
literature, ReLU is the most widely used one as follows [22]:

ReLU(x) =

{
x x ≥ 0,

0 x < 0,
(7)

Compared with other activation functions, ReLU is lightweight
and thus can remarkably reduce the model training time.
However, due to the sparse nature of the ReLU function, most
of neurons are suppressed and simply set as zero, which is
similar as in our biological nervous system, but this sparsity
may limit the learning capability in many situations [31], [20].

To relieve this problem, Batch Normalization (BN) and
other ReLU-based activation functions like ELU are proposed
in the deep learning field. We can avoid the sparsity drawback,
while they usually impose additional computation overhead.

ELU(x) =

{
x x ≥ 0,

γ · (exp(x)− 1) x < 0,
(8)

where γ is scaling factor. In cDeepArch, we propose to use
both ReLU and ELU two types of functions to complement
each other. In particular, we apply ELU to the first convolution-
al sub-layers and the second convolutional layer to preserve
the high quality features extracted from the frames, and ReLU
for the last layer to maintain the model to be sufficiently
lightweight.

Summary. With compact model management techniques
introduced in this section, the designed neural network model
can further connect with a SoftMax layer for the classification.

B. Recognition task decomposition

With the compact neural network model management’s
support from the underlying layer in the protocol stack (Fig.
1), this component is responsible to decompose the entire
recognition task into two sub-problems: context recognition
and the context-oriented target recognitions (e.g., for the
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Fig. 6: Illustration of the cognitive aid system.

objects or activities). In particular, this component contains a
compact neural network model for recognizing user’s context
information. For each context, it is further associated with
another compact neural network for recognizing the objects
that usually appear in such a context. The recognized results
can be directly used by upper-layer applications, and the
configuration of each compact model is managed by the
component introduced in the previous subsection.

For instance, in the cognitive aid system, the users adopt
mobile or wearable device to browse the world and the
camera from device generates first-person view video frames,
so that the objects or humans captured in the video can be
recognized and the result is displayed on the screen, as Fig. 6
shows. After the context information, e.g., home, is detected,
cDeepArch will load another compact recognition model under
this context to further conduct object recognitions.

IV. EVALUATION

A. Experimental setup

1) Dataset: We evaluate the performance of our cDeepArch
design using the public datasets. For the context recognition,
we apply the public data set, MIT Place2 [39] that is related to
the daily contexts, to train a compact neural network model for
the context recognition. For the object recognition, we further
adopt Cifar10 and Cifar100 [15], where Cifar10 consists of
32*32 3-channel RGB images in 10 classes, and Cifar100 con-
sists of 32*32 3-channel RGB images with 100 classes. In the
evaluation, we divide all classes from Cifar10 and 20 classes
from Cifar100 (whose associated contexts are covered by MIT
Place2) into different contexts in the daily life, e.g., the classes
of airplane, truck and automobile in Cifar10 defined in the
airport context. We adopt 400 images per class from Cifar10
and Cifar100 to evaluate the performance, respectively. Prior
to the evaluation, we have also collected the datasets for the
preprocessing to determine the configuration (e.g., kernel size
and feature map) of the compact neural network models. We
adopt 1 ∗ 108 FLOP as the resource budget. According to our
execution overhead formulation, we limit our configuration of
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and Full on the datesets of (a) Cifar-10 and (b) Cifar-100.

the kernel size and feature map amount to 5 different settings.
We develop neural network models as introduced in Sec. III.
As shown in Fig.7, the horizontal axis represents the parameter
settings, e.g., 3*3*100 means the convolution kernel is 3*3 and
there are 100 feature maps. According to the result, we select
5*5*64 as the default setting.

2) Evaluation metrics: We utilize the images from above
public datasets to emulate the first-person video application to
examine the performance of cDeepArch, where we investigate
three main performance factors, including the recognition
accuracy, parameter amount and time latency. In addition, we
also implement an approach, named Full, for the comparison,
which utilizes a single compact neural network (within the
same resource budget) to recognize the objects in all possible
contexts, i.e., without the decomposition.

B. Experimental results

Overall performance. Fig. 8 shows the overall performance
of cDeepArch, where the accuracy is from both the context and
object recognition two parts, i.e., the context is recognized
correctly first and the object recognition is further correct. For
the Cifar10 dataset, Fig. 8(a) shows when the total amount
of objects is not large, e.g., 10, both cDeepArch and Full can
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Fig. 9: The recognition accuracy for the (a) object recognition
and (b) context recognition performance of cDeepArch.

achieve similar performance, e.g., their average accuracy is
74.52% and 75% respectively. Full sometimes may perform
better than cDeepArch in this case because it does not involve
the errors from the context recognition. However, when the
object amount increases, the performance of Full rapidly
decreases. Fig.8(b) shows that when the object amount is
20, the best performance of Full is only around 50%. On
the contrary, cDeepArch can achieve 81%. In addition, there
are about 80% percentages in cDeepArch can achieve higher
than 50% accuracy and about 20% percentages can reach
higher than 80% accuracy. The results directly indicate the
effectiveness of the decomposition design in cDeepArch.

Object and context recognitions. To further understand
the performance of cDeepArch achieved in Fig. 8, we now
investigate the accuracy of cDeepArch for object and context
recognitions individually. Fig. 9 shows the cDeepArch can
achieve promising performance for the object recognition. In
particular, for the Cifar10 dataset, the average accuracy is
92% and 70% of cases achieve the accuracy higher than 80%.
Similarly, the average and 70% accuracies on the Cifar100
dataset are 78.8% and 60%, respectively.

In Fig. 9, we further plot the accuracy of context recognition
achieved by cDeepArch over the MIT Place2 data set (§IV-A).
The results show that nearly 70% percentages can achieve
higher than 70% accuracy and the average accuracy is 81%.
However, compared with the object recognition, the accuracy
of context recognition is still relatively low, which is the main
reason that dominates the overall performance of cDeepArch
in Fig. 8. In the future, we plan to continue to study how to
further improve the accuracy for the context recognition part.

Different enhancement techniques. In Sec. III, we propose
the convolutional layer separation, late pooling and activation
function fusion three enhancement techniques. In this trial of
experiments, we explicitly investigate the effectiveness of each
technique. In particular, we only enable one technique each
time to train and examine the corresponding models. Then,
we use the performance of cDeepArch as the baseline and plot
the percentage of the performance loss for each technique with
respect to the baseline, denoted as D-value in Fig.10, where
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the legends of “ReLU” or “ELU” means all activation layers
utilize ReLU or ELU activation function; the “No separation”
means the convolutional layer separation technique is not used;
the “No late pooling” means the neural network model does
not postpone the pooling operation.

In Fig. 10, we further check the performance loss of
each technique by varying the amount of objects to be rec-
ognized by the compact neural network model. When the
object amount is relatively small, e.g., 5, if we do not use
these techniques, the performance loss is not significant, e.g.,
within 5%. This is because in this case the original three
layer network model already has enough ability to learn the
object features. The enhancement techniques thus contribute
to limited improvements. From Fig. 10, we can also observe
that when the object amount increases, the performance loss
increases as well. For example, the D-value varies from 3%
to 10% when the amount of objects becomes to 10, especially
for the “ReLU”, “No late pooling” and “No separation”
three settings. In this case, the network model augmented by
the enhancement techniques could demonstrate its advantage
compared with the original model structure.

Model parameter comparison. In this experiment, we
evaluate the parameter amount of cDeepArch which consists
of two compacted networks: context recognition network and
context-oriented targets recognition network. Fig. 11 shows the
parameter amount in million of each network and the impact
on the parameter amount under different proposed compacted
techniques. From the Fig.11(a), both the context recognition
network and the targets recognition network only has small
parameter amount, 0.43M or 0.46M. The total parameters
of cDeepArch is just 0.89M, which indicates cDeepArch can
only consume few resources. In Fig.11(b), we can further find
that using the convolutional layer separation technique can
reduce the network parameter obviously. Particularly, in the
context recognition network, the parameter amount in million
without using separation strategy is almost twice of using it.
In addition, the late pooling technique and activation function
design also have certain improvements.

The time delay. In this trial of experiment, we investigate
the time latency of cDeepArch on a common computer with

Corei7 CPU. To train each network of cDeepArch, it takes 8
to 16 minutes to complete. After the training, as in Fig.12, the
time delay of the object recognition is about 69ms and the time
delay of context recognition is about 81ms. This indicates that
the overall time latency of cDeepArch is around 150ms, which
can be easily deployed on many existing computing platforms.

V. RELATED WORK

Deep learning for mobile platforms. In the literature,
there are some pioneer studies to merge the deep learning
with the mobile sensing. In particular, LEO [6] proposes the
inference algorithms cross different types of processors and
networking resources for the senor inference. MCDNN [9]
further introduces an approximation framework for the appli-
cations involving continuous vision. Lasagna [21] proposes a
hierarchical structure to process the mobile sensing data for
understanding and searching. On the other hand, there are also
recent works focusing on directly compressing deep learning
models. DeepX [17] accelerates the deep learning inference
with a software-based design. DeepIoT [33] further proposes
a more generic method to compress a set of different neural
network model structures.

Given prior achievements, the cDeepArch design is parallel
to above approaches, e.g., compact neural network models can
be further compressed or optimized according to the resource
or hardware requirements on different platforms. However,
none of these existing studies propose to decompose the
original recognition tasks into two lightweight and relevant
subproblems, to trade the adequate storage for the CPU and
memory efficiency for execution.

Mobile sensing enabled applications. In the literature,
there are also plenty of existing application designs enabled
by the mobile sensing. For instance, the authors in [7] propose
a cognitive assistance system using wearable devices and
leverage the cloudlet to process the sensing data. OverLay [12]
enables the AR services on user’s smart phones. Some other
applications are related to the e-health [5], fitness [21], etc. On
the other hand, recent works also demonstrate the advantages
to apply deep learning into mobile sensing to achieve good
system performance. In particular, MobileDeepPill [34] is a



smart phone based system that can recognize a large amount
of unconstrained pill images. iBlink [32] can further leverage
deep learning for facial paralysis patients by smart glasses.

The design of the cDeepArch architecture in this paper can
potentially benefit above application level designs. When the
possible classes or categories to be recognized are relatively
large, the deep learning models can be properly decomposed,
so that the execution can well match the resource conditions
of the processing platforms.

VI. CONCLUSION

This paper presents cDeepArch, a compact neural network
model architecture for mobile sensing and recognition. key
idea of the cDeepArch design is to decompose the entire
recognition task into two lightweight sub-problems: context
recognition and the context-oriented target recognitions, so
that it can be comfortably accommodated by various types
of computing platforms. This decomposition essentially u-
tilizes the adequate storage to trade for the CPU resource
consumption during execution. To examine the performance of
our design, we implement a cDeepArch prototype system and
conduct extensive experiments. The result shows cDeepArch
achieves excellent recognition performance and the execution
overhead is also lightweight. In the future, we plan to further
examine cDeepArch’s performance on the mobile platforms.
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