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ABSTRACT

This paper presents ArmTroi, a wearable system for understanding

and analyzing the detailed arm motions of people primarily by us-

ing the motion sensors from wrist-worn wearable devices. ArmTroi

can achieve real-time 3D arm skeleton tracking and reliable ges-

ture inference tolerant to missing wearable sensors for enabling

numerous useful application designs. We have coped with two ma-

jor challenges through ArmTroi. First, the skeleton of each arm is

determined from the locations of the elbow and wrist, whereas a

wearable device only senses a single point from the wrist. We find

that the potential solution space is huge. This underconstrained

nature fundamentally challenges the achievement of accurate and

real-time arm skeleton tracking. Second, wearable sensors may not

reliably provide sensory data. For example, devices are not worn by

the user, yet the learning tools for gesture inference, such as deep

learning, typically have static network structures, which require

nontrivial network adaptation to match the input’s varying avail-

ability and ensure reliable gesture inference. We propose effective

techniques to address above challenges, and all computations can be

conducted on the user’s smartphone. ArmTroi is thus a fully light-

weight and portable system. We develop a prototype and extensive

evaluation shows the efficacy of the ArmTroi design.
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1 INTRODUCTION

This paper presents a wearable system, ArmTroi. It can track the 3D

skeleton of the entire arm of a user in real time, e.g., the locations
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of the elbow andwrist with respect to (w.r.t.) the body [41]. ArmTroi

uses motion sensors (i.e., accelerometers and gyroscopes) from a

wearable device only on the user’s wrist (e.g., smart watch), instead

of attaching multiple sensors on the user’s entire arm. Both arms

can be tracked when a wearable device is worn on the wrist of each

arm. The tracked skeletons can directly enable numerous useful

application designs (§2.1). Moreover, the reconstructed skeletons

can be further processed using a carefully designed deep learn-

ing network to reliably recognize user’s gestures after resolving a

unique missing wearable sensor issue. Thus, ArmTroi can be used

as a generic platform to comprehensively understand and analyze

people’s detailed arm motions for enabling useful applications.

The ArmTroi design does not depend on the ambient infrastruc-

ture support, such as off-loading expensive computations to clouds

or edges [13, 57], due to limitations arising from restricted service

coverage, system costs, and privacy concerns. This paper aims to

achieve such tracking and inference ability in a fully portable and

lightweight system. In particular, wearable motion data are deliv-

ered to the user’s smartphone in ArmTroi, and the phone promptly

produces the tracking result for the use of applications, which can

be processed further by the deep learning network on the phone

for gesture inference. In this manner, the skeleton tracking and

motion inference abilities can be always available with the user.

Many useful applications can also obtain remarkable benefits, e.g.,

elderly care [50], e-health [14], and human-computer interaction

(HCI) [33], in the era of smart cities and Internet of things (IoT).

However, the following technical challenges should be carefully

addressed to obtain the aforementioned benefits.

1) We take advantage of kinematic studies [35], wherein Arm-

Trak [41] recently makes a remarkable contribution to recover

user’s arm motions from a single watch, to achieve the aforemen-

tioned skeleton tracking design; however, the shortcoming is long

recovery latency, e.g., a t-time activity requires around 10 × t times

to recover even on a desktop PC [41], which is due to the inherent

hardness problem, and limits the solution to an off-line analysis.

Skeleton recovery is essentially a search problem (for unknown

elbow and wrist locations within a huge space). We observe that

the search space can be carefully diminished (without impairing

tracking accuracy), and “unlikely” candidates can be intelligently

excluded as early as possible to considerably accelerate the search.

By this design, skeleton tracking in ArmTroi occurs in real time

even on a mobile phone, and can promisingly achieve a higher

accuracy than ArmTrak [41]. In addition, recovery errors are not

accumulated over time to support continuous tracking.

2) The fast skeleton tracking can be directly used in many use-

ful applications (§2.1). In many cases, we should further under-

stand user’s gestures through learning techniques (Figure 1), e.g.,

deep learning (which has recently exhibited great success), and the

tracked skeleton is also used for the gesture inference in ArmTroi.
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But compared with traditional deep learning’s inputs for gesture

inference (e.g., video [7]), wearable sensory data are not reliably

available (e.g., a wristband is removed by the user, thereby resulting

in the disappearance of this part of the input). Thus, an adapted net-

work structure is expected to effectively match currently available

inputs to prevent training multiple networks for handling all possi-

ble missing input combinations, which is non-scalable and storage

cost inefficient for the execution platform (i.e., smartphone) [49].

However, once a deep learning network is deployed after train-

ing, the network structure is hardly changed. We introduce an

attention-based design to achieve a virtual network adaptation to

address this possible missing input data issue, where attention [27]

is a novel technique for adjusting certain parameters of a network

(by multiplying a weighting vector where each weight can vary) to

enhance the output on the basis of a subset of the selected input

data [27]. Motivated by such an opportunity, we introduce and

design an attention component and seamlessly integrate it into our

system. In case some inputs are missing, the network can auto-

matically increase the weights for valid inputs and substantially

decrease the weights for missing parts, i.e., the missing inputs are

marginally considered by the network. One network structure can

thus handle all types of missing inputs.

Contribution. In summary, this paper makes following contribu-

tions. First, we propose novel techniques to improve the heavy-

weight computation of the state-of-the-art arm tracking model and

achieve real-time tracking. Second, we propose an attention-based

adaptation mechanism to achieve the dynamic deep learning net-

work adjustment to be tolerant to the input sensor data missing.

Third, we develop an ArmTroi prototype and present a comprehen-

sive evaluation with two case studies to show the design’s efficacy.

Implementation. In the current ArmTroi, the full set of sensors

is attached on three body parts: 1) a smart watch or wristband

that senses each wrist to recover arm skeletons w.r.t. the body,

and 2) a Google Glass or belt sensor that estimates the rotation

angle (θ in Figure 2) of an arm skeleton due to body’s inclination,

e.g., forward leaning or reclining. Notably, ArmTroi is positioned

to exert the best effort in tracking and analyzing arm skeletons

using only available sensors instead of forcing users to wear all the

sensors. Because this design position, some sensor data could be

missing, and we hence further propose an attention-based method

to achieve a robust gesture recognition in this paper.

We develop a prototype system using LG smart watches, Google

Glass, SAMSUNG Galaxy S7, and a desktop with Intel i7-6700 CPU

and Nvidia GTX 1080Ti GPU (for neural network training) for eval-

uation. We implement the ArmTroi arm tracking design on a smart-

phone, which can achieve real-time tracking and outperform Arm-

Trak [41] (on a PC with 10x recovery latency) by 15.92%. For ges-

ture inference, ArmTroi is also executed on the smartphone, which

achieves accurate activity recognition with 92.7% precision and

outperforms a set of recent designs. Finally, we examine ArmTroi

for fitness and gesture-based control two case studies.

2 OVERVIEW AND PRELIMINARY

A skeleton refers to a body’s 3D geometric relation, which is

uniquely determined by the location and orientation of each joint [41],

e.g., a user’s arm skeleton can be described by the eight major joints

.
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Figure 1: Illustration of the ArmTroi architecture.

(the skeleton model is detailed in §2.2). Thus, a gesture is a mean-

ingful skeleton sequence over time.

2.1 Application Scenarios of ArmTroi

ArmTroi can benefit many useful applications atop reconstructed

arm skeletons and recognized arm gestures as shown in Figure 1.

1) Elderly care. We can observe valuable signs of many diseases,

e.g., Parkinson and Alzheimer, by tracking the arm motions of el-

derly adults. Typical symptoms, such as limb stiffness, slow motion,

postural instability and repeated activities, are reflected from the

detailed 3D arm skeletons. Doctor can also quantitatively monitor

the status of patients after each treatment and obtain a detailed

clinic record with a further classification of the observed symptoms.

ArmTroi can advance elderly care techniques and industries.

2) E-health ecosphere. Detecting meaningful hand gestures can

prompt a healthier lifestyle [42, 47], e.g., alert for smoking and

reminders to drink sufficient water or eat meals on time. In certain

more sophisticated scenarios, such as sport training or fitness [39],

full arm skeleton tracking is also required, such as in basketball

shooting, weight training, and golf swing analysis. Hence, ArmTroi

can considerably expand the sensing ability of existing wearable

devices (with simple sensing abilities, such as step counting), which

can deeply stimulate the e-health device market.

3) HCI. In the wearable computing market, many novel HCI

designs have emerged recently (e.g., smart home devices andmotion

games [51]), and user arms’ gestures are the key inputs of these

systems. The ArmTroi design can provide a lightweight way to

obtain such desired inputs with a substantially extended service

coverage and decreased system cost, compared with cameras or

depth sensors adopted in existing solutions [26].

2.2 Skeleton Model in ArmTroi

According to [35], the skeleton of people’s arms can be described

by eight major joints, and these joints can be grouped into three

parts, wherein each part k ∈ {torso, left arm, right arm} is shown

in Figure 2. Torso (T) interconnects the two arms, and each arm

has three joints. Torso’s rotation angle θ determines the overall

inclination of the two arms’ skeletons.

From Figure 2, we can define each joint’s coordinates in the torso

coordinate system, e.g., the 3D skeleton obtained from a Kinect

device. We select the joint swivel as the origin of the coordinate

system and the direction from lumbar to swivel as the z-axis. Then,

for any joint j on body partk , we denote the joint’s posturepkj as the
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Figure 2: User’s arm skeletons can be described by 8 major

joints. One point cloud of the elbow is also illustrated.

union of its location lockj and orientation orikj (both are in the torso

coordinate system), e.g., pkj = {lockj ,ori
k
j }. For example, locrawrt and

oir rawrt refer to the location of right wrist and the orientation of

right forearm. Thus skeleton is S = {pkj } for all ks and js.

With these notations, we first show in §3.2 that the skeleton

of each arm can be efficiently determined by merely sensing the

user’s wrist. In addition, the torso’s inclination angle θ , e.g., the
angle between the horizontal plane and the segment from swivel

to lumbar, further introduces an overall rotation (w.r.t. the default

θ = 90◦) for the locations of joints in a global coordinate system.

We finally can obtain the user’s arm skeletons presented in the

global coordinate system1 by assembling the two aspects.

2.3 Gesture Inference

The gesture set in ArmTroi currently contains three categories

of gestures in Table 1 via the following considerations: 1) Many

gestures in Table 1 represent widely performed activities in our daily

life; 2) The gestures in Table 1 also cover isolated body parts that

dominate gestures and gestures that involve multiple body parts.

Thus, this selection and organization can allow a full examination

of the efficacy of the ArmTroi design; 3) Finally, the scope of the

considered gestures includes user’s natural and predefined gestures

for gesture-based control and interactions in a smart space.

3 SKELETON TRACKING DESIGN

Figure 1 depicts the ArmTroi architecture with the key system

modules. We introduce designs of skeleton tracking in this section

and gesture inference in the next section (§4).

3.1 Design Principle

A recent study ArmTrak [41] found that if a smart watch is worn on

a user’s wrist, then the arm’s entire skeleton can be recovered from

the smart watch’s motion data by using kinematic knowledge [35].

Details can be found in [41], but we highlight the recovery principle

here given that we also adopt this principle. Moreover, we explain

the reason why ArmTrak cannot be used directly in this paper.

Principle. In accordance with the model in §2.2, determining an

arm’s skeleton essentially confirms two parameters: locelb : the
relative position of the elbow w.r.t. the origin of the torso coordinate

system swivel, and oriwrs : the orientation of the wrist in the torso

coordinate system, i.e., the manner in which the forearm rotates

w.r.t. the user’s body. Once locelb and oriwrs are determined, the

1It may have a fixed offset with the Earth’s north, which it can be compensated for by
the user’s facing direction estimator [41].

Categories Gestures

Daily gestures (4)
shake hands, make a call,

open a door, drink water

Free-weight (10)

front raise (a/p), biceps curl (a/p),

bent over single arm, chest fly (i/s)

bench press (i/s), lateral raise

Customized (3) push, pull, circle

Table 1: Targeted gestures in ArmTroi. The a, p, i, s stand for

alternating, in parallel, incline and sitting, respectively.

other parameters associated with all the joints on this arm also

become immediately available because the arm is a rigid object [35].

Considering that a smart watch directly senses the user’s wrist, its

gyroscope can report wrist’s orientation in the global coordinate

system (denoted as oriwatch ), which can be further converted to

the torso coordinate system [41]. That is, parameter oriwrs can

be indirectly measured from the watch’s gyroscope data oriwatch .

Thus, the remaining task is to determine locelb by two phases.

1) Off-line phase: From the kinematic model, ArmTrak observes

that all possible elbow locations, locelb , are non-arbitrary given

one (indirectly) measured wrist orientation oriwrs . The locations

are within a limited range, and different oriwrs values correspond

to various ranges (of different sizes). After sampling, each range

can be represented by a set of discrete elbow location points and

is denoted as a point cloud [41] (such as in Figure 2). In the off-

line phase, for each wrist orientation oriwrs (of several degree

granularity), ArmTrak builds a library to store its corresponding

point cloud, which is a one-time effort for the user.

2) Recovery phase: When a user’s arm is moving, smart watch pe-

riodically reports motion data. In addition to the aforementioned gy-

roscope data oriwatch (t) at time t , watch’s acceleration accwatch (t)
can also be obtained. Considering that the wrist and elbow are con-

nected by the forearm, which is a rigid object, the acceleration of

the elbow accelb (t) can be converted from accwatch (t) in accor-

dance with the skeleton model [41]. That is, accelb (t) can also be

indirectly measured from watch’s acceleration data.

Moreover, after T time stamps, we have T point clouds (based

on oriwrs (t)). We can generate a feasible moving trace of the user’s

elbow by selecting one location from each point cloud. Given that

the sampling interval is established, two consecutive locations

lead to elbow’s velocity, and two consecutive velocities further

derive an acceleration value accelb . Thus, we can select the loca-

tion trace {locelb (t)}
T
t=1 across theseT point clouds, whose derived

{accelb (t)}
T
t=1 best matches the {accelb (t)}

T
t=1 that is indirectly

measured from the smart watch’s acceleration data (Figure 3).

Complexity. The problem can be formulated using the hidden

Markov model (HMM) to search for the most likely result for one

unknown across time, e.g., elbow’s location locelb (t) within a large

space, e.g., a point cloud, with certain observations related to this

unknown, e.g., accelb (t); then, dynamic programming, e.g., Viterbi,

can solve it within O(S2T ) [41], wherein the search space size is S ,
and the total time step is T . To fulfill the HMM formulation, each

circle in Figure 4(a) represents a point cloud at time t of size O(N ).

As shown in Figure 3, each HMM state of ArmTrak is defined as a

pair of elbow locations among two consecutive time stamps. The
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search space of each HMM state is O(N 2), and the solution com-

plexity is O(N 4T ), which can be reduced to O(N 3T ) by leveraging

the location continuity [41]. To further accelerate the Viterbi search,

T can be downsampled to 5 Hz from the default 50 Hz.

To understand the complexity of this solution, the latency on

a quad core desktop reported in [41] is that the recovery of 10 s ,
30 s , 1min, and 3min activities takes 98.2 s , 289.3 s , 9.1min, and
26.9min, respectively. The latency increase is 10x on average. We

conduct experiments and obtain consistent results, e.g., 9x to 12x.

3.2 Accelerating Skeleton Recovery

The dominant factor that still slows down recovery is the O(N 3)

term as the O(T ) term is already downsampled. To this end, one

naive solution is to blindly downsample each point cloud. This

approach can accelerate recovery while directly sacrificing the

resolution of recovered skeletons with deteriorated performance.

The following techniques can further diminish the O(N 3) term to

prevent this issue:

• HMM state reorganization: reducing O(N 3) to O(N 2).

• Methodology improvement: decreasing N to a considerably

smaller n without impairing recovery resolution.

The latency performance can be improved from 10x latency to occur

in real time even on phones using above two techniques. ArmTroi

can achieve an even higher accuracy than ArmTrak. Because with

the decreased complexity, ArmTroi can accommodate denser point

clouds in the search.

Before we present the design details, we note that the speedup for

HMM has been studied in various related areas [31, 34], but to our

knowledge, the unique challenges and opportunities in ArmTroi

have not yet been explored (§7).

3.2.1 HMM State Reorganization. In accordance with the skeleton

recovery principle in Figure 3, each HMM state in [41] is

st = < locelb (t − 1), locelb (t) >,

which is depicted in Figure 4(a)2. The rationale aims to enumer-

ate the velocities for all location pairs among two adjacent point

clouds. Then, two consecutive HMM states can lead to all possible

acceleration values accelb (t). Among which, we can select the best

matched one w.r.t. accelb (t). However, between two consecutive

states, e.g., from st to st+1, only the tuples that share a common

location locelb (t) can be actually transited, thereby indicating that

2In Figure 4, t0 only indicates the start of sensed data. ArmTrak and ArmTroi do not
require t0 to align with an activity’s beginning.
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Figure 4: HMM state constructions of size (a) O(N 2), and (b)

O(N ) for all the states except the first one.

such an HMM state definition involves many infeasible cases. Al-

though ArmTrak [41] improves this condition, e.g., toO(N 3), it can

be further diminished.

The transition from s1 to s2 in Figure 4(a) is equivalent to that

between two new states:

s ′1 = < locelb (0), locelb (1) > → s ′2 = < locelb (2) >,

which also preserves all possible acceleration values cross the first

three point clouds (Figure 4(b)). The advantage of this update is

that starting from the fourth point cloud (after t3 in Figure 4(b)), all

the remaining states can be defined as st =< locelb (t) >, and the

HMM state can be reorganized as:

st =

{
< locelb (0), locelb (1) >, if t is 1,

< locelb (t) >, otherwise,

which could reduce the possible paths to be considered in the HMM

search. This reorganization essentially trades the completeness of

the HMM path selection for the search efficiency. Through our

experiments, we find that the accuracy loss is only slight (e.g., 0.45

cm tracking error increase on average) due to this tradeoff, while

this HMM state reorganization design plays an equally important

role (as the hierarchical search in §3.2.2) to accelerate the HMM

search and ensure the real-time tracking (§5). With the reorganized

HMM states, only the first state has size O(N 2), whereas the sizes

of all the remaining states are O(N ), e.g., the overall search space S
is nearly O(N ). Hence, search complexity is decreased to O(N 2T ).

3.2.2 Hierarchical Search. In addition to the HMM state remod-

eling, we observe a possibility to further improve the solution

complexity without impairing the resolution of the search space,

e.g., point clouds. We make the following key observation.

Observation. In the original Viterbi search, we need to explore

within a large search space for each time step, but only one location

is the correct solution, which implies that most computations are

consumed (“wasted”) to calculate the likelihoods for all “incorrect”

locations so that they can be eventually excluded. Our core idea is

thus to exclude incorrect locations as early as possible to minimize

computational waste and focus on likely-to-be correct candidates

for acceleration.

Proposed solution. To this end, we propose to conduct the search

in a hierarchical manner, which is a multi-scale search over the

entire search space, starting with a coarse-level estimation of the
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point cloud path and then progressively evaluating the path at a

finer spatial scale. In particular, we first conduct downsampling

for point clouds with a ratio of 1
n1
, i.e., we group every n1 nearby

locations within allO(N ) location points within a cloud intoO( Nn1
)

regions and use the centroid of each region to form a coarse-level

search space with a size ofO( Nn1
). Then, we perform the first round

of search over this coarse-level space. In the execution of the first

round of search, the most likely region can be determined for each

time step, as shown in Figure 5. The complexity for completing this

round of search is O( Nn1
)2T .

We can immediately launch the next round of search after se-

lecting four regions from the first round (nearly in parallel) while

focusing on these selected regions with the output from the first

round (i.e., selected regions). That is, the effective point clouds in

this new round are merely “shrunk” to these selected regions of

sizeO(n1), as shown in Figure 5. In principle, we can further divide

each selected region into sub-regions by using a downsampling

ratio of 1
n2

and then search over these sub-regions for the second

round. The complexity of the second round search is O(n1
n2
)2T .

This process can be repeated. In the last round, all the original

location points in the selected regions from the second last round are

used to finalize the elbow’s location at each time step. In accordance

with the abovementioned design, the hierarchical search excludes

the incorrect locations as early as possible (i.e., unselected coarser-

level regions) to minimize computational waste, while preserving

the original location point resolution in the final result (as the last

round search uses the original elbow’s location points within the

selected region). In summary, if we apply hierarchical search for R
rounds, then solution complexity is as follows:

O(
∑R

i=1
(
ni−1
ni

)2T ), (1)

where n0 is N . To understand the efficacy of our proposed solution

to reduce computational complexity, considering that we search

two rounds, where n1 = 10 and n2 = 1, i.e., in the second round.

Thus, complexity decreases from O(N 2T ) to

O((
N

n1
)2T + (

n1
n2

)2T ) = O((
N

10
)2T + (10)2T ) = O(n2T ),

where n ≈ N
n1
, e.g., N /10, and n1 � N . This result also indicates

that complexity reduction mostly results from the first round of

downsampling. We thus adopt a two-layer search (R = 2) in the

current ArmTroi, and the setting of n1 is further examined in §5.

Enhancement. We also propose two enhancement designs to

achieve further improvements: 1) moderately expanding the se-

lected regions from the first round of search to tolerate certain

searching errors and 2) increasing the cloud point density of the

selected regions for the last round of search to augment the final

resolution. The details are omitted due to page limitation, but we

include their performance in §5.

3.2.3 Torso Motion Compensation. For some activities in Table 1,

the user’s torso inclination angle θ in Figure 2 may not be 90◦,

i.e., torso’s inclination. Moreover, some activities may even be per-

formed when the user is moving, i.e., punching while walking for

the gesture-based control, which is denoted as torso’s moving. In

the future, if belts widely have motion sensors, then such torso

Region 
Centroid 

Searched elbow 
location

Point cloud 
for state st

Point cloud 
for state st+1

Original location 
points

...1stround

2ndround

Figure 5: Illustration of the proposed hierarchical search.

motions can be trivially compensated for. In this study, we examine

another complementary opportunity (yet immediately usable) from

a wearable that is already available in the market, e.g., smart glasses,

to demonstrate the design with the full set of sensors.

Given that the head is directly connected to the torso and we

focus on distinguishing several body statuses in similar activities

in Table 1, e.g., body is vertical or inclined, smart glass sensors are

sufficient for such design.

1) Compensate for torso’s θ angle. To estimate the torso’s θ angle,

the glasses’ gyroscope data, after projected onto the x-z plane of
the torso in Figure 2, approximately indicate the θ angle, which also

excludes user’s head horizontal rotation. The user’s head may also

rotate along the x-z plane, such as when nodding. During activi-

ties, however, the θ angle dominates the projected gyroscope data

onto the x-z plane, whereas head rotation along this plane only

introduces a varying and infrequent component. The average gyro-

scope data projected onto the x-z plane within the sliding window

provide a good approximation because we focus on distinguishing

several torso inclinations in Table 1 (§5).

2) Compensate for torso’s moving. We can detect a user’s walk on

the basis of the periodical pattern from the glasses’ accelerometer

readings. In §5, if the glass gyroscope indicates that a user’s head

is not rotating, then the acceleration of the smart glasses is close to

that of the body’s walking. Thus, we can deduct the acceleration

data of the glasses from those of the smart watch (in the torso

coordinate system) before recovering the skeleton.

Summary. So far, two wrist wearable’s data can recover user’s arm

skeletons3 and glasses provide torso’s inclination (e.g., inclined,

vertical, or declined), which can be assembled to form the final

skeleton output. The skeleton can be used directly in applications

(§5) or to further infer the corresponding gesture labels (§4).

4 GESTURE INFERENCE TOLERANT TO
MISSINGWEARABLE SENSORS

With complete skeletons as inputs (from two arms and torso), we

can train a deep learning network for gesture inference. However,

wearable sensors are not reliably available. If a wearable device is

removed or out of service [49], then the corresponding body part

lacks sensor coverage, and this skeleton portion becomes missing.

In such case, we should adapt the network to match the current

available inputs to ensure continued performance. To this end, we

3When elbow location is known, other joint locations on the same arm can be easily
obtained as they are connected by rigid objects.
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Figure 6: Network structure design to preserve motion fea-

tures from each body part with all input sensors.

first introduce a primary network design with the full set of inputs

(§4.1). Moreover, network structure is further augmented by an

attention-based design to handle the missing input data issue (§4.2).

4.1 Primary Network Structure

We first propose a primary network structure design, as shown in

Figure 6. Because each body part’s motion is relatively indepen-

dent [35], this network can initially extract motion characteristics

from individual body parts to preserve features from each part’s

motion and then gradually fuse them to infer various gestures.

Network inputs. For this primary network, the detailed inputs

from the recovered user skeletons include the following:

• skeleton’s spatial relation: the coordinates of all the eight

major joints in the skeleton model (Figure 2) at each time

step, which mostly reflect the skeleton’s spatial shape.

The following can be further used considering that the user’s ges-

tures are essentially a time-domain skeleton sequence:

• skeleton’s temporal relation: the coordinate difference for

each joint in every two consecutive time steps.

Network structure. With the aforementioned inputs, we propose

to first apply a recurrent neural network (RNN) to extract the in-

put’s individual dynamic motion features [30] and then gradually

concatenate them with additional RNNs for further extracting char-

acteristics from an aggregated view, which are finally used for

the gesture inference shown in Figure 6 with three-layer RNNs.

Given that glasses are only used to infer the torso’s inclination, the

temporal sequence of torso is omitted from the input.

1) RNN layer. The input data and extracted features from the

fusion layers f l1 and f l2 (which are introduced later) are passed to

the RNN layers (rl1, rl2, and rl3) for the motion dynamics analysis,

where we adopt the popular long short-term memory (LSTM) [18,

38] for the RNN layers without the vanishing gradient issue [17].

Assuming that the LSTM’s input sequence of T time frames is

xr = (x0r , ...,x
T−1
r ). Its output is yr = (y0r , · · · ,y

T−1
r ), and each

ytr = o
t
r ◦ fy (c

t
r ),

where ctr = f tr ◦ ct−1r + itr ◦ fc (W
c
r x

t
r +W

y
r y

t−1
r + bcr ) is the cell in

an LSTM model; otr , f
t
r and itr are gates in an LSTM model;W c

r and

W
y
r are the weights; bcr is a bias vector; fy and fc are the activation

functions [30]; and r is the index of each LSTM module.

2) Fusion layer. Two groups of fusion layers (f l1 and f l2) exist.
The f l1 layers integrate the extracted features (by LSTM) from

LSTM
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Figure 7: (a) Relation of the attention component with other

network modules; (b) Weights update by attention.

two arms. Then, f l1’s outputs are reprocessed by LSTM, and their

consequent outputs with torso’s feature are further fused by f l2.
3) Fully connected and Softmax layers. After these two layers, the

output is the activity with the highest probability.

4.2 Attention-based Network Adaptation

When some input sensing data are unavailable, instead of training

multiple networks such that each one handles a type of missing

input (which is nonscalable and also storage cost inefficient, partic-

ularly for mobile devices), we introduce an attention-based design

to achieve a virtual network adaptation, which behaves similar to a

series of dedicated networks that handle different types of missing

input but without the network structure changes. Only certain pa-

rameters are adjusted, and their varying results can automatically

match the currently available inputs.

Attention component. The attention model [27] is an emerging

technique for dynamically adjusting deep learning network’s “fo-

cuses” by multiplying a weighting vector that each weight can vary,

such that the output is mostly derived on the basis of a subset of the

input data (also known as context). The network differentiates its

input data and always utilizes the most effective portion (context) to

generate outputs. We can thus leverage this ability to automatically

increase the weights for valid inputs and substantially decrease

the weight for missing parts (the missing inputs are marginally

considered in the network). Hence, the attention component is a

suitable technique for handling the missing input sensor data issue.

Solution. ArmTroi introduces an attention component in the dashed

rectangle in Figure 6 between fusion layer f l2 and the last LSTM.

Originally, the temporal feature extracted from each body part via

LSTM (rl2), i.e., y
t
r , where r = 1, 2 and 3, in Figure 7(a), is equally

fused into z = {zt1, z
t
2, z

t
3}, where each ztr is from ytr . This feature

vector z serves as the input xt of the last LSTM. But with attention

in Figure 7(a), each ztr is differentiated in xt as follows [53]:

xt = ϕ({ztr }, {α
t
r }), (2)

where ϕ(·) aims to combine the feature vector z = {ztr } and their

corresponding weights {α tr }. As explored in prior studies [1, 53],

function ϕ(·) is typically computed as the weighted average xt =∑3
r=1 α

t
r · ztr , where the weights α t = {α tr } are obtained by an

attention function fatt (·) as follows:

α t = fatt (z
t ,ht−1), (3)

where ht−1 is an internal descriptor in the last LSTM (rl3) for de-
scribing the decoded features for each activity to be recognized until

the previous time step t − 1, in Figure 7(b). The key insight from the
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aforementioned equations is that the value of each weight α tr differ-
entiates the contributions of every network input to the recognition

of each gesture. In Eqn. (3), the attention component applies fatt (·)
to quantify the likelihood of the current feature {ztr } (from every

body part) in aligning with the activity descriptor ht−1 until the last
time step t − 1 on the basis of the current features extracted from

each individual body part z = {ztr }. Function fatt (·) essentially
prioritizes the contribution of each ztr (thus far) to determine the

correct output from all the activity candidates. After the iterative

updating (as t increases) in Eqn. (3), the weight α tr for a highly

contributed ztr will be gradually increased in xt =
∑3
r=1 α

t
r · ztr

by function fatt (·). In case some inputs are missing, its associated

weight α tr will be gradually decreased by the attention function,

i.e., the missing parts will be marginally considered by the network.

Hence, one network structure can address all types of missing input.

The attention function fatt (·) essentially functions similar to

another neural network to fulfill weight adaptation [1]. To reduce

computation, fatt (·) is typically realized as a single-layer multilayer

perceptron, such as tanh(·) and ReLu(·) [1, 53]; however, it still
follows the same principle as a complete neural network, i.e., all the

inputs are first linearly combined and then undergo the nonlinear

function. In ArmTroi, the fatt (z
t ,ht−1) function is designed as:

att t = Relu(zt +W · ht−1 + b), (4)

α t = fsof t -max (U · att t ), (5)

where att t is an intermediate variable; α t = {α tr }, fsof t -max (·)

scales the weights α t to the range [0,1]; andW , b and U are the

parameters to be determined in the training phase.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

We develop ArmTroi using LGwatches (with Invensense MPU-6515

six-axis motion sensors), Google Glass, SAMSUNG Galaxy S7, and

a desktop with Intel i7-6700 CPU and Nvidia GTX 1080Ti GPU.

Implementation. For the skeleton tracking part, we develop all

the designs in §3 and deploy them on the smartphone. We also

deploy a desktop version to demonstrate the possibility of further

improving the performance when a more powerful CPU is avail-

able. In particular, we increase the density of cloud points on the

desktop by 1.4x compared with the mobile version. For the HMM

formulation in the search, we set three probabilities as suggested

in [41]. 1) The prior probability Ppr i is uniform for both rounds

because we are unaware of the initial elbow location, and each loca-

tion is possible. 2) The transition probability Ptra is Gaussian [41]

for the errors between the computed accelb and the measured

accelb . 3) The emission probability Pemi is equal to 1 because Ptra
already contains acceleration observations. In addition, we imple-

ment ArmTroi’s deep learning network using TensorFlow. After

network development and training on the desktop, the executable

network is deployed on the smartphone.

Methodology. We recruit 7 volunteer users (3 females and 4males),

and their information to generate their point clouds (from user 1 to

7) is as follows: a) Torso length: 52.6, 54.9, 55.2, 57.0, 56.1, 48.7, 47.2;

b) Shoulder breadth: 33.6, 34.6, 36.4, 41.4, 33.6, 31.2, 32.4; c) Upper

arm: 27.1, 26.3, 26.1, 25.2, 27.1, 25.2, 24.2; d) Lower arm: 23.9, 23.3,

22.8, 24.3, 23.9, 22.1, 21.5, where the unit of all these lengths is cm.

Point clouds are personalized to be used in the hierarchical search.

Before the experiment, a short tutorial is provided for the devices

and all the 17 activities in Table 1, which form two activity sets:

10 for free-weight (FW) and 7 for daily activities (DA). Note that

DA contains daily and customized gestures in Table 1. Then, the

users perform each activity 30 times and they will manually start

and end the data collection for each activity (obtaining labels for

gesture recognition evaluation). We use Kinect 2.0 to collect ground

truth and observe each activity takes 5 to 10 s usually. For skeleton
tracking, we also collect additional free motions of the user’s arms.

For the deep learning evaluation, we train two networks for the

FW and DA activity sets, respectively, used for all seven users. The

input data size contains five data stream channels (Figur 6) with the

10-second input data batch size. Each layer has 64 and 256 neurons

for DA and FW networks, respectively. We use 70% of the data

collected from five users for training. Then we evaluate ArmTroi’s

performance on the rest 30% of the data from these five users and

also other two users, whose data are not used in the training.

5.2 Skeleton Recovery Performance

In this subsection, we first evaluate the overall skeleton recovery

accuracy by comparing the following methods:

• ArmTroi: our design and its desktop version (ArmTroi-D),

where both versions work in real time.

• ArmTrak [41]: state-of-the-art method primarily working

on a desktop with nearly 10x latency increase.

Overall recovery accuracy. Figure 8(a) shows the CDF of skeleton

errors for the elbow and wrist (including both arms), respectively,

using ArmTrak on desktop and ArmTroi on smartphone. When the

sensor data is input to ArmTrak and ArmTroi, we let both of them

to traceback at the current time stamp in the HMM search to report

locations every second (five intermediate location values in the last

second). ArmTroi could output results in real time, while ArmTrak

can only conduct an offline recovery due to high latency. Overall,

ArmTroi outperforms ArmTrak for elbow and wrist tracking. For

the elbow, the median errors of ArmTrak and ArmTroi are 12.94

and 10.53 cm, respectively. For the wrist, their errors are slightly

higher4. Compared with ArmTrak, ArmTroi can reduce the elbow

and wrist recovery errors by 18.6% and 13.2%, respectively.

To further understand the design of two methods, Figure 8(b)

also plots the tracking accuracy when HMM traceback is performed

over each entire motion sequence (global optimization [41]), hence

intermediate HMM states benefit from the future data [41]. The

result shows that the elbow (wrist) errors for ArmTrak and ArmTroi

can be reduced to 11.45 (14.28) and 9.6 (11.64) cm, respectively.

In Figure 8(c), we further observe that if ArmTroi is executed

using the same desktop CPU as ArmTrak, the elbow and wrist

errors (ArmTroi-D) can be further reduced to 8.56 and 11.56 cm
respectively, as we can accommodate denser point clouds in the

search due to the decreased computation complexity.

Parameter setting. In Figure 9(a), we examine the parameter set-

ting of ArmTroi’s search, i.e., the manner by which many cloud

points are grouped as one region for the first round search. For each

4Similar as [41], this might be due to Kinetic’s sensitivity to different joints.
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point cloud, points are plotted on a sphere (as depicted in Figure 3).

Thus, we divide the sphere into different regions to examine this

parameter’s setting in Figure 9(a). If the division is coarse, e.g., 5 ∗ 5,

then the final recovery error is large because each region is only

represented by its centroid in the first round search, and the selected

regions from the first round can be highly inaccurate. Meanwhile,

the latency is also high because the search space (the size of each

selected region) is large as well. As shown in Figure 9(a), we observe

that when region division is sufficiently dense, e.g., 10 ∗ 10, small

errors and latency can be simultaneously achieved. If the division

becomes even denser, then the error remains stable, but latency

will increase again. Thus, we select 10 ∗ 10 as the default setting.

In Figure 9(b), we further examine the performance gains of two

complexity reduction techniques proposed in ArmTroi. We set the

latency of ArmTrak as the benchmark. In our implementation, an

activity with duration t requires t × 11.76 times to be recovered by

ArmTrak for one arm. However, the latency is decreased to t × 4.69

with only HMM state remodeling, i.e., without the hierarchical

search (“ATroi-wo-HS” in the figure). For the full version of ArmTroi

on the desktop (“ATroi-D”), the latency is t × 0.15. Even on the

mobile phone (“ATroi”), the latency is t × 0.47. Figure 9(b) indicates

the efficacy of our complexity reductions, which could thus support

real-time tracking for both versions.

Body inclinations and different users. In Figure 10(a), we fur-

ther examine the activities in the free-weight category that involves

different torso inclinations. We find that compared with the case

when the user’s torso is vertical, e.g., standing or sitting, the me-

dian elbow and wrist errors slightly increase by 1.09x and 1.06x,

respectively, due to torso inclinations. In Figure 10(b), we also plot

the detailed recovery errors for all seven users, where ArmTroi

consistently performs well for different users, i.e., median elbow

and wrist errors are 10.53 cm and 12.94 cm respectively.

In the context of edge-based services. We compare ArmTroi

finally in the context of edge-based services, with a recent design

MUSE [40]. Figure 11(a) shows that MUSE can achieve a slightly

lower tracking error than ArmTroi, where the median errors of

MUSE and ArmTroi are 9.69 cm and 10.53 cm, respectively. We also

configure two methods to output locations every second (five loca-

tion values in the last second). Figure 11(b-c) depicts that ArmTroi

can output immediately in real time, while for MUSE, its output

time is postponed and the latency increases, since it needs an extra

1.1 × t latency to generate output for a t-time activity. Figure 11

inspires the benefits of ArmTroi to the applications from privacy

and efficiency two aspects compared with edge-based systems (§6).

Figures 8 to 11 show ArmTroi achieves good recovery perfor-

mance, thereby benefiting both gesture inference and applications.

5.3 Gesture Recognition Performance

In this subsection, we continue to examine the deep learning part

by comparing the following methods:

• ArmTroi: our method with the attention component.

• Lasagna [24]: directly uses raw, sparse sensing data.

• MULT: we train multiple networks (e.g., six). Each network

handles one combination of missing inputs: 1) complete in-

puts, 2) input from the left or right arm (LA/RA), 3) inputs

from two body parts (three combinations).

• Dropout [49]: a recent design that uses the dropout tech-

nique to cope with the missing data issue.

Overall accuracy. In Figure 12(a), with the complete set of input

sensors for FW and DA (two activity sets), Lasagna achieves 83.9%

and 89% for the two data sets, and ArmTroi can further improve

the results by 8.8% and 2.4%, respectively. This finding is attributed

to the recovered postures embracing “out-of-band” kinematic infor-

mation, which is not owned by raw data. With the complete set of

sensor inputs, ArmTroi and MULT can achieve comparable perfor-

mance, e.g., 91.4% to 92.7%, considering that input information is

complete in this case. Figure 12(b) plots the accuracy of ArmTroi on

different users. In general, ArmTroi exhibits a stable performance

with a high accuracy across all users. The performance is slightly

worse for the last two users because their data are not used in the

training phase. We envision leveraging semisupervised learning to

improve their performance in the future.

ComparisonwithMULT. In Figure 13 (a), we further examine the

impact of missing inputs on the inference accuracy of ArmTroi. As

a benchmark, we also plot the performance of MULT, leading to the

best performance can be achieved when input missing happens. We

find that with the attention-based design, ArmTroi can promisingly

achieve comparable performance as training separate networks. In

Figure 13, FW, DA, and AT represent free weight, daily activity, and
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ArmTroi, respectively. When only the sensing data from two body

parts are available (e.g., LA, RA and T stand for left-arm, right-arm

and torso, respectively), although ArmTroi never sees such input

combinations in the training phase, the accuracy losses of ArmTroi

for T+RA and RA+LA are moderate (e.g., <3%) compared with those

of MULT, which is benefitted by the attention-based network adap-

tation. For T+LR, both methods are considerably degraded because

right-hand gestures dominate in most of these activities in our daily

life. Moreover, when only the sensing data from one arm is avail-

able, the accuracy could drop more. In §5.4, we further consider

and address this issue in our first case study.

Different padding values for missing inputs. When the input

missing occurs, we need to pad certain values for these missing

inputs. Padding zeros could be a natural option (our default setting),

while we also examine the performance by padding non-zero values.

In Figure 13(b), we treat the accuracy achieved by padding zero

as a baseline and plot the accuracy differences by padding non-

zero values one (FW-P1 and DA-P1) and ten (FW-P10 and DA-

P10). We can see from the result that the accuracy differences are

nearly 0% for most input combinations. This indicates the attention

component can effectively adjust the weight vector to match the

currently available inputs, regardless of padding values.

Different strategies to handle missing inputs. In the literature,

there are two possible ways to handle missing inputs (using one

network): 1) Dropout [49] and 2) one neural network trained using

the data with all types of input missing combinations (i.e., ArmTroi

without attention). We find that the second method achieves the

worse performance, which is thus used as the baseline to examine

ArmTroi and Dropout. In Figure 14(a), for the FW activity set,

ArmTroi outperforms Dropout on all sensor input combinations

from 0.7% to 12%. For the DA activity set in Figure 14(b), ArmTroi

outperforms Dropout on all sensor input combinations from 1.4% to

7.4%. Dropout is more effectively when there are multiple sensors

providing redundant sensor readings [49], while our system setting

does not include redundant sensors. The results show that ArmTroi

can handle this missing sensor issue effectively.

Efficacy of attention component. In Figure 15, we further ana-

lyze the performance of the attention-based design. We first show

a detailed attention weight updating process to match the missing

input data. In Figure 15(a), only LA’s sensing data are available.

Originally, the weights of three body parts have their initial val-

ues (being different in the recognition of different activities). After

LA’s sensing data are entered into the network, the three weights

are gradually adjusted by the attention function. In particular, the

weight for RA is originally small and remains constant as RA’s input

is missing. The weight for T is large in the beginning. However,

its corresponding input is also missing, and thus, its weight keeps

decreasing. LA’s weight gradually increases and finally overwhelms

the other two to generate the output.

In Figure 15(b), we provide more examples (e.g., 20), wherein

each red square represents the sensor input to the network. During

the network’s execution, we record all the weights in the attention

component for each body part and plot the dominant weight as “x”

in Figure 15(b) when we obtain the inference output. The result

shows that the weights can match the input’s availability, i.e., net-

work can achieve correct attention to the most meaningful inputs

to generate the output, thereby ensuring good performance against

the input’s varying availability.

Analysis of sensing and learning designs. ArmTroi contains

the designs from the two major aspects of wearable sensing (skele-

ton tracking) and deep learning (with attention-based adaptation).

We then analyze ArmTroi’s overall performance losses each as-

pect contributes to. In Figure 16(a), after we replace the recovered

skeletons with the ground truth collected using Kinect, denoted

as “Kinect-ATroi”, the accuracy of gesture inference (still using

our deep learning design) improves by approximately 1.4%. If we

further use MULT to replace our deep learning part, denoted as

“Kinect-MULT”, the best performance can be achieved when input

is missing, and accuracy further increases by up to 5.5%. This result

indicates our sensing and learning designs contribute to 20.3% and

79.7% overall performance losses, respectively.

Effect of input setting. We further study the effect of different

network input settings on performance. As depicted in Figure 6 on

page 6, two types of inputs are available for each body part, i.e.,

the skeleton itself and the skeleton difference across time. In Fig-

ure 16(b), we individually investigate the two aspects by removing

the skeleton inputs (“ATroi-wo-S”) and skeleton difference inputs

(“ATroi-wo-SD”) from the network. Figure 16(b) shows that atop the
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original skeleton inputs, explicitly providing the skeleton difference

can improve performance by 7% to 11% because each gesture is a

sequence of meaningful arm motions.

5.4 Case Studies

5.4.1 Fitness Activity Assessment. Many recent designs propose to

use wearables to facilitate fitness[6, 12] like Figure 17. Two main

tasks such applications are: fitness guidance and activity recognition.

Fitness guidance. With the arm skeleton information, the fitness

coach can provide the trainee with a detailed free-weight activity

template that illustrates the angle information of major joints in

each arm. A substantially concrete guidance can be achieved for the

trainee to improve his/her performance by visualizing the activities

of the coach and trainee. The coach can also provide a detailed

assessment score for each activity, as shown in Figure 18 for the

comparisons of two shoulder’s (a and b) and two elbow’s (c and d)

angles between the same activities of the coach and the trainee. The

high assessment score based on such a fine-grained comparison

indicates that the trainee performs well, which is considerably more

indicative and useful than using the raw, sparse sensing data.

Long-term recovery errors. Figure 19(a) shows the location er-

rors of the wrist and elbow along time for a long-term activity

(lasting for 2min). The results show that the errors are bounded

rather than continuously increased. This property, i.e., errors are

not accumulated over time, is also important for such applications.

Semantic label recognition. Another task for fitness is to recog-

nize training activities as a part of the fitness log for quantifying

workout outcome, e.g., calorie consumption, and understanding or

updating the fitness plan. In §5.3, when certain inputs are missing,

some activities may not be reliably recognized even with our atten-

tion adaptation. Instead of recording these potentially less reliable

results into the fitness log, we observe the opportunity to benefit

output utility for this case study. Lasagna [24] recently observes

that many human activities have layered semantic meanings. Free-

weight activities evidently have this attribute. Figure 17 depicts a

partial (due to the page limit) layered semantic meaning tree for

the free-weight activities listed in Table 1. We incorporate this idea,

with an extended design as follows, into ArmTroi for this case study

to determine the appropriate semantic meaning as output, instead

of insisting on the original activities but producing incorrect re-

sults. To this end, for each input combination, we compute the true

positive r
tp
i and false positive r

f p
i rates for every activity Ai in

the training set on the basis of their labels. Then, we can mark the

semantic tree using two steps.

Pararrel 
biceps 
curl

Alternating 
biceps curl

Parallel
front 
raise

Alternating  
front raise

Lateral 
raise

Front raiseBiceps curl

Free weight

Chest exerciseArm exercise

tp

fp

True positive False positiveTrue positive False positive

Figure 17: Illustration of a (partial) semantic tree covering

the activities in the free-weight activity set.

Step 1: If a leaf node (activityAi ) has a high true (e.g., r
tp
i ≥ θ tp )

and low false (e.g., r
f p
i < θ f p ) positive rates, it is marked as “H”

(High confidence); otherwise, it is marked as “L” (Low confidence),

where θ tp and θ f p are empirically set as 0.6 and 0.4 in §5, respec-

tively. Thus, all the leaf nodes are marked by either “H” or “L”.

Step 2: All the intermediate nodes can also be recursivelymarked

by either “H” or “L” from the bottom (leaves) to the top (root). For

each intermediate node, if all of its children nodes are “H”, then

it is immediately marked as “H”; otherwise, it must contain “L”

children. Then, we virtually aggregate all its children nodes as one

and calculate the true and false positive rates for this parent node,

i.e., whether the higher-level semantic meaning can be reliably

detected. If yes, this parent node is marked as “H”; otherwise, “L”.

After the two steps above, all semantic tree nodes are marked

by “H” or “L”. Then, for the input data in real usage, we can first

apply the network to obtain its original inference output. If the

output is on an “H” leaf node, then we consider it the final result;

otherwise, we will trace back on the marked tree and output the

first encountered “H” node. Figure 19(b) shows that with this design,

recognized semantic labels become highly accurate for nearly all
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sensor input combinations. Figure 19(c) further plots for all those

correctly recognized activities, 81% and 19% are from leaf (L1) and

parent nodes, respectively.

5.4.2 Gesture-based Control. In this subsection, we develop one

more case study, in which certain arm gestures are predefined as the

commands used for the gesture-based control in the smart space.

Figure 20(a) first depicts several commands that the user per-

forms, including a circle and triangle, which are close to the ground

truth measured from the Kinect. From Figure 20(b) to (d), we fur-

ther evaluate gesture command recovery when the user is walking,

e.g., circling in the air. In the experiments, if the glass gyroscope

indicates the user’s head is not rotating, then the acceleration of the

smart glasses is close to the body during the walk. Thus, we deduct

the acceleration data of the glass from those of the smart watch

before skeleton recovery. Figure 20(b-d) shows that the tracking

error only increases about 1 cm compared with the static setting.

5.5 System Overhead

Memory usage and execution time. For the skeleton tracking

part, the average memory usage values are 780 MB and 450 MB on

the desktop and smartphone, respectively, which can be substan-

tially accommodated by existing mobile platforms. The execution

time is already reported in Figure 9(b). For the deep learning part,

the memory usage and execution time are 419 MB and 169 ms ,
respectively, thereby indicating ArmTroi’s deep learning design is

also lightweight. In addition, we also examine the execution time

on the desktop, which can be further decreased to 76ms .

Energy consumption. We measure the energy consumption of

ArmTroi on SAMSUNG S7 by Monsoon power monitor in Figure 21.

As a benchmark, the device’s energy consumption, i.e., working

current (mA), in idle state with screen on is about 90mA.
Similar as the setting in §5.2, ArmTroi conducts the hierarchical

search every second to report five location values in the last second.

Figure 21 shows the energy consumption for a 10-second activity

tracking (“Track-Full”). To have a comprehensive understanding

of this energy profile, we further configure ArmTroi in two modes,

“Track-State” and “Track-First”, to measure the energy consumption

of the smart watch state estimation (e.g., wrist orientation, etc.) and

the first-round HMM search only, respectively. The result shows

that “Track-State” increases the working current up to around 350

mA, and “Track-First” further increases it to more than 1000mA.
Figure 21 also unveils that “Track-Full” consumes similar energy

as “Track-First”, which implies that the second-round search does

not incur extra energy overhead obviously. When the hierarchical

search is launched in “Track-Full”, the average working current is

around 480mA and the peak value climbs up to around 1100mA,
while it lasts for less than 0.5 s due to our HMM acceleration design.

The average working current of “Track-Full” is only 270mA.
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Figure 21: Energy consumption measurement for ArmTroi.

In Figure 21, we also examine the energy consumption of the

deep learning network (“Inference”), which takes a 10-second skele-

ton traces as the input data batch (§5.1). The result shows that its

working current is about 400mA (lasting less than 200ms). On the

basis of this experiment, we also discuss the possible ways in the

future to further reduce the ArmTroi’s energy consumption in §6.

6 POINTS OF DISCUSSION

Pre-knowledge of user information. Similar as the previous

work ArmTrak [41], our system ArmTroi also requires the pre-

knowledge of some user-specific information to generate the point

clouds for each individual user, including the torso length, shoulder

breadth, upper-arm length and lower-arm length. Fortunately, the

generation of point clouds is an one-time effort for each user.

Energy consumption. To further improve the energy efficiency

of ArmTroi, two potential ways can be explored in the future. For

skeleton tracking, we can leverage the continuity of arm’s motion to

also reduce the search space. Supposing that we have estimated the

current arm location, its near-future location will not be extremely
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far away and we can thus directly shrink the first-round search

range. Therefore, two aspects can be examined in the future: 1)

the closeness of the first-round search range cross consecutive

time stamps, and 2) how often this space reduction mechanism

can be applied. For the gesture recognition, recent neural network

compression techniques, such as [25, 54], can effectively reduce the

network size, thereby decreasing the energy consumption, but still

preserve good accuracy. This opportunity can also be explored for

the gesture recognition design in ArmTroi in the future.

Tracking accuracy. Recently, people can utilize cameras to track

user’s 2D upper limbs or even the whole body with errors of about

2 cm to enable person re-identification, video re-targeting and robot

teaching applications [3, 56]. Meanwhile, 3D recovery is achieved

using depth cameras [55] or VICON [43] for the applications, such

as the sport analysis with 2.5 cm error. Recent studies, like [56],

also propose to use wireless signals and deep learning to enable

the through-the-wall tracking with the error of 7.6 cm. Camera or

wireless devices typically have a limited service coverage. Theymay

also have higher system costs and/or privacy concerns. However,

they generally achieve higher accuracy than the wearable-based

methods, which indicates the room that the wearable-based meth-

ods can be improved. Further improving the tracking accuracy will

be one useful and important next step in the future.

Relation to edge-based services. ArmTroi can also benefit even

when the edge-based service becomes popular from two aspects.

First, the application provider could leverage the lightweight com-

putation of ArmTroi to support more users simultaneously with the

same CPU resource consumption. The second benefit appears when

the edge-based system is not available or not preferred to be used.

Moreover, even the edge-based service is available, some users, who

have a high standard on the user privacy and data security, may

still not be willing to use such a third-part platform. In this case,

the local execution on the user’s phone could be a preferred option.

7 RELATEDWORK

Sensor-based skeleton recovery. In the literature, the studies [36,

46] leverage multiple sensors to recover body pose, but performance

highly depends on the similarity of testing and training data due to

methodology limitation [41]. Existing works [4, 8] have focused on

upper limbs, but they also require multiple sensors on the arm.

ArmTrak [41] is one of the most practical wearable-based solu-

tions at present. It recovers user’s arm motions using only a smart

watch. However, its recovery latency is long (10x). Recently, the

authors of [41] propose MUSE [40], which achieves slightly better

location estimation accuracy than ArmTrak and also cuts computa-

tion. However, according to [40] and our evaluation in §5, MUSE

achieves slightly better tracking accuracy than ArmTroi but it is

still not sufficiently lightweight for both desktop and smartphone.

As discussed in §6, ArmTroi provides the opportunity to enhance

applications from privacy and efficiency perspectives in practice.

With regard to techniques, HMM has long been applied to infer

user’s pose [20]. Prior works [20, 34] mostly apply HMM to classify

various activities, but precise skeleton tracking using wearable sen-

sors is considerably challenging [41]. Various efforts are currently

available to accelerate HMM in a hierarchical search. However,

technical insights and challenges vary for different input data and

applications. For example, image data can be projected from 3D

to 2D for activity recognition to accelerate HMM search [31], and

words’ correlation can be used for speech recognition [5]. Our

proposed HMM acceleration design has not been explored before,

wherein the hierarchical search technique can be further used for

different the trajectory estimation problems.

Missing deep learning input data. Recent studies find that miss-

ing input data may degrade deep learning’s performance [48].

Training separate networks for each combination of missing in-

puts [11, 42] is nonscalable and also storage cost inefficient [49].

Some existing work has studied the missing input data issue using

domain knowledge, such as the joint utilization of video and audio

for speech classification [32], input selection for speech recognition

with the neural network trained with the input stream dropout [28],

and clinical diagnosis [23]. For mobile and wearable sensors, recent

multilayer perceptron [49] finds that when multiple modalities of

sensors serve as the deep learning’s inputs (with redundancy), the

dropout technique [44] can be effectively resilient to losing certain

inputs. However, ArmTroi does not include redundant sensors.

The attention technique is widely used in the fields of natural

language generation and visual object recognition [45]. Typical ap-

plications include language translation [1], news summarizer [37],

and picture caption generation [53], mostly using textual contents

or images as inputs to generate target outputs. ArmTroi leverages

this technique to address the missing input data issue in a novel

way that one network can behave like multiple networks to au-

tomatically handle all types of missing inputs. This ability can be

applied to other cases when multiple devices’ data need to be fused.

Activity recognition by deep learning. Deep learning is widely

applied in applications [6, 9, 14, 16, 24, 50, 52] without using hand-

crafted features [2, 22]. Parallel to the application designs, numerous

network improvement designs are also available [29], e.g., resource

optimization [10, 15, 19] and network compression [21, 25, 54].

8 CONCLUSION

This paper presents a wearable system, called ArmTroi, to under-

stand and analyze user’s armmotions. We propose novel techniques

to enable real-time 3D arm skeleton tracking and gesture inference

tolerant to missing wearable sensors. The ArmTroi design can serve

as a generic platform to enable numerous arm motion-oriented

applications. We implement an ArmTroi prototype. Extensive eval-

uations on the prototype, along with two concrete case studies,

demonstrate the efficacy of ArmTroi, which achieves promising

tracking and inference performance.
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