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Rulers on Our Arms: Waving to Measure Object Size
through Contactless Sensing

YANG LIU, YONGHANG JIANG, ZHENJIANG LI, and JIANPING WANG,
City University of Hong Kong, China

In this article, we propose a mobile system, Aware, which turns our wearable or mobile device into a ruler. It

can estimate the size of objects that could be large in size and not directly touchable by the user. Such a design

will enable a rich set of applications that count on the size information of surrounding environments/objects.

Aware purely utilizes the motion sensors on the device for object size measures. It can also integrate with

the crowdsourcing feature for both performance improvement and result sharing. We propose a series of

key techniques to address three major challenges in the Aware design: (1) user’s angle of line-of-sights to

the object is used in the size measure but motion sensors track only the angle of arm’s waving, (2) motion

sensors are noisy that require novel and effective data processing techniques, otherwise the errors could

easily overwhelm the final result, and (3) in the crowdsourcing mode, Aware needs to identify vicinal objects

of similar sizes and effectively fuse the measured sizes that correspond to the same object. We consolidate

the above designs and implement Aware on Android platforms. Extensive experiments with four users show

that Aware can achieve accurate measurement performance for the objects of various sizes in both indoor

and outdoor environments.
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1 INTRODUCTION

This article presents Aware, a system that turns our wearable or mobile device, e.g., smart watch
or phone [31], into a virtual ruler. The design of Aware is inspired by the scenario envisioned
in the future—the size information of objects on the earth, e.g., height and width, becomes widely
available, which is attached to the object in the digital space and can be easily displayed or extracted
by the user, e.g., through street view softwares, like Google Maps. We foresee this can benefit at
least:
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(1) Working convenience related to the object size. Decoration workers can browse their cus-
tomer’s house and yard sizes in advance on-line to decide the appropriate volume of ma-
terials (e.g., oil paint) and suitable instruments (e.g., ladder) to bring. Truck drivers can
check the height limits before the departure to select the best route. Designers can decide
the proper poster size sticked on different places for charity or social activities.

(1) Smart living. Based on the height of an apartment in the building, the indoor temperature
and lighting (affected by the sunshine) and the air circulation (affected by the air pollution
level outdoor) can be controlled intelligently. The object sizes could also be seamlessly
integrated into the Augmented reality (AR) [10], e.g., for famous objects and architectures,
to benefit tourist and education, e.g., in history and geography classes.

(1) Study activities. Students or researchers, e.g., in biology, could collect enriched experi-
mental data. For instance, the biology students can record a regular growth process of
large plants, e.g., height and width of the crown. In addition, some very detailed informa-
tion, like the distribution of fruits on the plant, e.g., fruits’ heights, can also be efficiently
recorded from the crowds for study.

Although this might be an intriguing scene about the future, it has unveiled an emerging and
desired need to measure object size, e.g., height and width, where the measured area can be large
in size and not directly touchable by the user, e.g., far away or hanging in the air. In addition, the
solution needs to be convenient, such that people can easily perform the measurements and be
willing to contribute their results to the envisioned digital space, which is clearly difficult to be
built by any centralized authority due to the large object volume in our daily life.

In the literature, there are prior efforts that can measure object size from a large amount of im-
ages [6, 17] in the research community, but the computation normally needs to be offloaded to the
server, not afforded by the portable platforms along with the user, e.g., smart watch or smart phone,
since these works utilize expensive computer vision algorithms in the design. As the computation
is not conducted locally, the offloaded images will also increase the transmission overhead and
incur potential privacy concerns, largely alleviating users’ willingness to measure and share their
results. Although some recent designs [3, 19] can execute on mobile devices locally but suffer the
limitation that the measured area must touch on the ground and/or only the height measurement
is viable. In addition, these methods also suffer the issues, including the impact of ambient light
condition, the camera distortion, the difficulty of calibration, and so on. In summary, the limita-
tions stated above fundamentally prohibit existing designs being a convenient and desired solution
as envisioned above.

To cope with these drawbacks, in this article, we introduce Aware, a contactless object size
sensing service design using purely motion sensors, e.g., accelerometers and gyroscope, to fulfill
the aforementioned need. To measure the size from a and b of an object as in Figure 1, a user
straightens his arm and waves from pointing at a to b. Geometric relation (among various formed
triangles) is then established between the user and the object, and their relative quantity can be
derived using motion sensor readings. The user repeats this process at another location a few steps
away, leveraging the moving distance as a bridge to convert the relative relation to the absolute
size of the object. This principle is extensible for the object width measurement as well, and also
compatible to the case when the measured area is hanging in the air, e.g., the size from a to c as in
Figure 1. All Aware’s computations for the object size measure can be completed on the wearable
or mobile device locally, while Aware can also work in an advanced mode with crowdsourcing for
both the performance improvement and result sharing.

However, translating the above idea to a real system entails the following challenging issues:

(1) Indirect measurements. Aware adopts user’s angle of line-of-sights to the object (e.g., from
eyes to a and b in Figure 1) in the size measure. However, motion sensors track the angle
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Fig. 1. Aware ’s working principle. User waves the arm to measure the object size at two locations steps
away, using wearable or mobile motion sensors.

of arm’s waving, which is not equal to the angle of line-of-sights, since the user aims at
the points using eyes. Nevertheless, how to extract this hidden relation, which can take
such indirect angle inputs to derive the object size, is so far unknown yet.

(2) Low-accuracy measurements. In addition to the indirect measurements, the quality of input
sensor data is also noisy [21]. The errors can be easily accumulated and reflected from
the derived parameters, impairing the final measurement accuracy. However, the object
size model in Aware also needs certain user-specific profile. Enforcing its setting to end-
users certainly incurs inconvenient user experience, and the configuration errors from
inexperienced users could further continuously degrade Aware’s performance.

(3) Crowdsourcing with vicinal objects of similar sizes. In the crowdsourcing mode of Aware,
objects of similar sizes may co-exist in the vicinity, and users’ measured sizes also contain
errors. We need to effectively identify the measured sizes that correspond to the same
object before the fusion.

Contributions. To cope with the above challenges, we propose a series of key techniques in the
Aware system design. The contributions can be summarized as follows:

(1) We study the geometric relation of user’s upper part of the body and propose a new model
that converts the indirect sensor inputs to the desired parameter values, so that measuring
object size using on-board motion sensors becomes viable. The computation of this model
is lightweight, which is completely affordable on wearable or mobile platforms.

(2) We remove the dominating sensor errors in deriving model parameters from the low-
accuracy motion sensor inputs, such as from accelerometers and gyroscopes. We further
propose refinement techniques that leverage user’s historical measures and data indepen-
dence to enhance the parameter and model accuracy. However, all user-dependent profiles
are automatically configured without user’s explicit input.

(3) To fuse the crowdsourced object size measures, we propose a density-based clustering ap-
proach to identify the measured sizes that correspond to the same object, based on which
Aware could aggregate different measures from crowds and return the much improved
crowdsourced object size result to users.

We implement Aware on the Android platforms. Extensive experimental studies with four users
in both indoor and outdoor environments show that the object size measure error can be 8% on
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Fig. 2. Architecture of Aware with mobile front-end and crowdsourcing back-end. The mobile front-
end completely fulfills the object size measure function and all computations are local on the devices. The
back-end design provides an advanced crowdsourcing feature for both the performance enhancement and
the result sharing.

average, which is sufficient for many useful daily applications. In the experiment, we also find
that our profile automation design can provide a great convenience for Aware users by avoiding
an explicit user parameter measure. In addition, we investigate Aware in the crowdsourcing mode,
which further improves the performance by 78% to 22% in different scenarios, compared with the
accuracy from individual measures.

Roadmap. The rest of this article is organized as follows. We conduct an overview in Section 2 and
detail the Aware design from Sections 3 to 5. We implement Aware and evaluate its performance
in Sections 6 and 7. The related work is reviewed in Section 8. We introduce the limitations of the
current Aware design in Section 9 before we conclude in Section 10.

2 AWARE OVERVIEW

The Aware design strives to fulfill many daily application needs (Section 1) that require a con-
venient method to estimate object size, where the object can be large in size and not directly
touchable by the user. Aware is thus positioned as a pioneer attempt of such a contactless approach

that can achieve a relatively high accuracy to satisfy the application demands, instead of the replace-

ment of any professional precise measuring instrument. In this section, we first introduce the system
architecture, followed by the detailed designs in the following sections.

The architecture of the Aware service, at a high level, is composed of two primary parts: (1) the
mobile front-end, and (2) the crowdsourcing back-end, as illustrated in Figure 2. The mobile front-
end is a compulsory module for each Aware user, which completely fulfills the object size measure
function. The back-end design provides a crowdsourcing feature (optional yet encouraged) for
both the improvement and result sharing.

2.1 Mobile Front-end

In the mobile front-end, we first achieve a primitive object size measure design, and then leverage
several key insights to further enhance Aware’ performance.

ACM Transactions on Sensor Networks, Vol. 15, No. 1, Article 14. Publication date: February 2019.
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Primitive Object Size Measure (Section 3). We investigate the geometric relation of human’s
upper part of body and propose a new model to derive the object size (Section 3.1). This new model
in turn requires us to cope with two main tasks (Section 3.2):

Walking distance calculation. User’s walking distance between two measurement locations is a
core parameter in the object size model. However, this distance is usually short in Aware, e.g., a few
steps, which prohibits the adoption of existing approaches (detailed in Section 3.2.1). In light of this,
we analyze user’s walking pattern and propose a gait-based calibration technique. It can exclude
dominant sensing noises by leveraging a speed consistence feature and dramatically reduce the
calculation error for user’s walking distance.

Waving angle conversion. The object size measure model also needs user’s sight-line rotation
angles (with respect to the horizontal plane) during arm’s waving. This component can convert
indirect sensor inputs, which traces arm’s movement, to the desired sight-line angular values.
The conversion, however, requires certain user-dependent parameters to assist. We thus further
propose to automatically configure these parameters, without user’s explicit input (Section 3.2.2).

Object Size Measure Refinement (Section 4). With the above primitive object size measure
design, we find through experiments an urgent desire for the design refinement and also observe
valuable opportunities from two aspects.

Parameter refinement. Among all parameters used in the model, the accuracy of the user’s walk-
ing distance still dominates the final performance, and we have significantly improved its accuracy.
In this component, we further propose a fusion mechanism that can leverage the unused vertical
motion hint from stride estimation to augment calculation’s robustness and reliability (Section 4.2).
The refined walking distance can also be used to recalibrate other parameters.

Model enhancement. This component enhances Aware’s object size measure model. In particular,
when the bottom of a measured area is on the ground, e.g., a very common case when measuring
an object’s height, the model can be improved by using an alternative model expression with
less input errors, and we leverage this opportunity to further improve the measurement accuracy
(Section 4.3).

2.2 Crowdsourcing Back-end

In the crowdsourcing mode, in addition to the submission of measured object size, a user also needs
to upload its own location, walking direction and relative distance to the object. Such information
can be obtained along with the object size measure (Section 5). We allow users to disable the
crowdsourcing feature according to their privacy preferences.

To fuse the results with crowdsourcing, the back-end engine projects individual size measures to
a 2D spatial plane, generates an intensity map and leverages density-oriented clustering to identify
the measured sizes that correspond to the same object, based on which we can aggregate different
measures from crowds and generate crowdsourced result.

3 PRIMITIVE FOR OBJECT SIZE MEASURE

We introduce our proposed object size measuring model of Aware in this section.

3.1 Object Size Measure Model

To measure the object size, e.g., the tree height from a to b in Figure 3, a user wears or holds the
device (with the Aware service running), stretches the arm to point at a, and waves the arm until
it points at b. This process is then repeated at another location a few steps away.

As depicted in Figure 3, a horizontal plane α , passing through user’s eyes, divides user’s sight-

line rotation angle into θt and θb (or θ ′t and θ ′
b
) two parts. The to-be measured object size h is
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Fig. 3. Basic object size measure principle of Aware . To calculate the object size from a to b, the model
requires to derive user’s walking distance d and sight-line rotation angles θt and θb (as well as θ ′t and θ ′

b
)

using motion sensors.

also partitioned into two segments ht and hb by plane α , where h = ht + hb . According to the two
tangent values, tan(θt ) and tan(θ ′t ), we observe the difference between ht/ tan(θt ) and ht/ tan(θ ′t )
is equal to user’s walking distance d , i.e., d = ht/ tan(θt ) − ht/ tan(θ ′t ). Similarly, the difference
between hb/ tan(θb ) and hb/ tan(θ ′

b
) also equals to the walking distance d . We thus have

⎧⎪⎪⎨⎪⎪⎩

ht = d/(
1

tan(θt ) −
1

tan(θ ′
t
) ),

hb = d/(
1

tan(θb ) −
1

tan(θ ′
b

) ).
(1)

Because h = ht + hb , object size h can be calculated by

h = d ×
(

tan(θ ′t ) · tan(θt )

tan(θ ′t ) − tan(θt )
+

tan(θ ′
b

) · tan(θb )

tan(θ ′
b

) − tan(θb )

)
. (2)

To measure the object size h using Equation (2), we thus need to determine the following
parameters:

• User’s walking distance d , and
• User’s sight-line rotation angles, θt , θb , θ ′t , and θ ′

b
.

User’s walking is immediately related to device’s motion sensor readings (Section 3.2), while
the sight-line rotation angles are not directly measurable, because wearable or mobile devices

track only the attitude of user’s arm, e.g., θ̂t and θ̂b with respect to the horizontal plane in Figure 4,
instead of the sight-line rotation angles. To cope with this issue, we analyze the geometric relation
of a user’s upper part of the body. Figure 4 depicts that for sight-line angle θt , we have an

alternative expressions for tan(θt ), e.g., tan(θt ) = (a × sin(θ̂t ) − y)/(a × cos(θ̂t ) − x ), where the
arm rotation radius a and the two user-dependent parameters x and y are illustrated in the figure.
Similarly, we have an alternative expression for tan(θb ) as well. Thus, a user’s sight-line rotation
angles θt and θb (also θ ′t and θ ′

b
) in Equation (2) can be calculated by

θt = arctan((a × sin(θ̂t ) − y)/(a × cos(θ̂t ) − x )), (3)

θb = arctan((y − a × sin(θ̂b ))/(a × cos(θ̂b ) − x )). (4)
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Fig. 4. Illustration of the angle conversion from user’s arm waving to the sight-line rotation.

Table 1. Parameters in the Object Size Measure Model

Parameters Description
d User’s walking distance

θ̂t and θ̂b Arm’s angular attitudes
a Arm rotation radius

x and y User-dependent factors as in Figure 4

With Equations (3) and (4), to derive object size h in Equation (2), all the parameters to be
determined are listed in Table 1.

In fact, the object size model derived above can be further extended to handle the following
two variant scenarios:

(1) Bottom of measured area is not on the ground. We note that the principle in Equation (2)
does not require the bottom of the measured area touching the ground. Moreover, if the
bottom position is even above the horizontal plane, e.g., position c in Figure 3, angleθb (and
also θ ′

b
) becomes to be negative. As a consequence, h = ht + hb is automatically changed

to h = ht − hb for Equation (2).
(2) Measure the object width. In this case, the user waves the arm horizontally and the sight-

line rotation angle can be divided into θl and θr two parts as well, by a vertical plane along
the user’s facing direction. We can then apply a similar calculation as Equation (2) (e.g.,
by substituting θt and θb by θl and θr , respectively) to measure the object width.

3.2 Deriving Model Parameters from Sensors

With the object size model proposed in Section 3.1, we need to determine the concrete parameters
tabulated in Table 1. In this subsection, we first develop a collection of toolkits that utilize on-board
sensors to preliminarily calculate these parameters. Of course, some of these initial calculations
can be unreliable, which could limit the object size measure accuracy. As a result, in Section 4, we
further propose key techniques to systematically enhance the overall performance.
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Fig. 5. Per-step errors using three methods. Abbreviations “DI,” “MR,” and “GE” stand for direct double-
integral, mean-noise removal and gait-based calibration, respectively.

3.2.1 Walking Distance d . The walking distance d in Aware is usually short, e.g., a few steps.
This prohibits the adoption of GPS, as its location error about 10 to 20m [21] could overwhelm the
final result. However, the calculation of d needs to be completely local on the device (no ambient
infrastructures required), because the user may merely use Aware’s mobile front-end in diverse
environments. This thus excludes indoor localization techniques [32], which reply on the infras-
tructure support.

Traditional stride estimation techniques [1, 2, 34] could use motion sensors to estimate user’s
each walking step length. However, they need to manually measure the walking ground truth to
train a stride estimation model in advance. The training error from inexperience users could cause
continuous performance deterioration and training certainly incurs inconvenience as well.

In Aware, we propose a training-free approach using accelerometers (assisted by the gyroscope)
to directly calculate the walking distance d , through the double-integral of the accelerations along
user’s walking direction. However, the direct double-integral result is known to be erroneous [34].
As in Figure 5, the per-step distance error can be up to 25cm on average with around 67cm per
step.

Mean-noise Removal. Given k + 1 acceleration samples {ai } for a device’s movement, where
i = 0, 1, . . . ,k , if its initial and final velocities, denoted as v0 and vk , respectively, both equal to
zero, the mean-noise removal technique1 can be applied to improve the accuracy of calculated
distance. In Aware, both v0 and vk satisfy this requirement, as the user is static before and after
walking.

However, the mean-noise removal is most effective when the device’s moving distance is rel-
atively short [30], because the compensated linear acceleration noise dominates the error in this
case. In Figure 5, we apply double-integral to the mean-noise removed accelerations. The result
shows that the performance can be improved, but very limited.

Gait-based Calibration. To further prompt the accuracy, we observe that a user’s walking in
Aware is essentially composed of three phases: (1) speeding up in the first one or two steps,
(2) remaining a relatively stable (average) speed in the middle,2 and (3) slowing down in the last
one or two steps. The stability of the speed in the middle phase can be further utilized to enhance
the accuracy in calculating walking distance d .

When a user walks, steps can be identified from vertical accelerations [34], e.g., two consec-
utive peaks or valleys correspond to one step in Figure 6(a). Due to the speed stability feature,

1Mean-noise removal technique calibrates each acceleration sample ai by a same factor so that given v0 = 0, the calculated

vk equals to its expected value, i.e., zero.
2This feature exists, when a user follows his/her natural gait pattern without an intentional change in the walking. As

each user in Aware walks a few steps merely, it is reasonable to assume they are cooperative, e.g., using their natural gait

patterns.
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Fig. 6. Calculating walking distance d . (a) Each step is identified through the vertical acceleration peaks
or valleys, and (b) offsets are observed within each middle-phase step.

the centroid of the accelerations projected on the horizontal plane within each middle-phase step
should be zero, e.g., the average speed remains. However, as Figure 6(b) reveals, an offset can be
always observed. This is mainly due to (1) non-linear acceleration errors that cannot be removed
by the mean-noise removal (our target here), and (2) inevitable gait irregularity (even a user walks
following its natural gait pattern with a relative average walking speed).

In Aware, we propose to further compensate the accelerations by enforcing the centroid of hori-
zontal accelerations within each middle-phase step to be zero. Although the gait irregularity should
distort the stability feature, the accuracy improvement achieved in Figure 5 indicates the non-linear
acceleration errors dominate the offset, where the per-step error reduction is above 50%.

Although the walking distance accuracy can be dramatically improved, we find there is still
room for a further refinement in Section 4.2. Therefore, according to above observations and ex-
periments, the preliminary walking distance d in Aware is calculated as follows:

• Apply mean-noise removal to remove the linear error for all the acceleration samples.
• For speeding up and slowing down two phases, e.g., the first step and the last step, the

distance is computed by double-integral using mean-noise removed accelerations.
• For each middle-phase step, accelerations are further purified by enforcing the acceleration

centroid to zero, based on which the distance is computed by the double-integral.

3.2.2 Waving Angle Conversion. In addition to user’s walking distance d , Aware’s object size
model also needs user’s sight-line rotation angles, θt , θb , θ ′t , and θ ′

b
in Equation (2), during arm’s

waving. In this subsection, we convert indirect sensor inputs, e.g., (1) arm’s angular attitudes θ̂t and

θ̂b that traces arm’s movement, to obtain our desired angular values, assisted by (2) arm rotation
radius a and (3) user-dependent parameters x and y in Table 1.

Arm’s Angular Attitudes θ̂t and θ̂b . When arm is straightened, its angular attitudes are consis-
tent with device’s attitudes, as Figure 4 depicts. Mobile operating systems nowadays can precisely
track device’s attitudes in an absolute coordinate system [36]. For instance, the API on Android
platform, TYPE_GAME_ROTATION_VECTOR [5], can be used to derive the pitch, roll, and yaw

angles of a device to represent device’s absolute attitude.
From Figures 7(a)–7(c), we examine the accuracy of the angles obtained from the Android plat-

form in three typical working environments of Aware: outdoor, indoor, and indoor with electro-
magnetism interference. The angle’s rotation range is [0,π ] in the experiment. From the result,
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Fig. 7. CDF of the angular and arm rotation radius errors. Angle errors in (a) outdoor, (b) indoor, and
(c) indoor with electromagnetism interference three environments. (d) Distribution of calculated arm rota-
tion radius a, and (e) error CDF.

we observe that majority of angular errors are less than 0.01 radian, indicating that the device’s
angular rotations can be precisely and robustly tracked.

Arm Rotation Radius a. To automate this configuration, we can find when user’s arm is waved,
e.g., from positions u to v in Figure 4, an isosceles triangle is formed by the arm and device’s
displacementm. Hence, we have

a = m

/
�
�
2 × sin �

�
θ̂t − θ̂b

2
�
	
�
	
, (5)

where arm’s angular attitudes θ̂t and θ̂b are obtained already and the displacementm can be com-
puted by the double-integral of accelerations with the mean-noise removal. Because m is short,
the mean-noise removal is effective [30]. In Figure 7(d), a user waves the arm multiple rounds, and
we observe that the computed a approximately follows a Gaussian distribution. We can thus aver-
age the calculated a from multiple object size measures to approximate its true value. Figure 7(e)
shows that the final error of calculated a is 5.2cm on average. How such an accuracy attributes to
the final object size measure performance is evaluated in Section 7.

User-dependent Parameters x and y. These two parameters describe the lengths of two line
segments inside human’s body. Therefore, they are non-trivial to be explicitly measured. Our key
idea to determine x and y is to treat them as variables and leverage the geometric relation to solve
their values. We find that when a user uses Aware for the first time, if the user waves the arm to
measure the same object at three different locations as in Figure 8, we are able to solve x and y
directly, which is an one-time effort.

For θb in Figure 8, tan(θb ) = hb/(d + d
′ + l ′), where the variables hb , d , d ′ and l ′ are annotated

in the figure. Equation (4), however, indicates that an alternative expression of tan(θb ) is tan(θb ) =

(y − a × sin(θ̂b ))/(a × cos(θ̂b ) − x ). Therefore, we have

hb

d + d ′ + l ′
= (y − a × sin(θ̂b ))/(a × cos(θ̂b ) − x ). (6)
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Fig. 8. Initial configuration for parameters x and y.

Similar expressions can be written for other five angles, θt , θ ′
b
, θ ′t , θ ′′

b
, and θ ′′t as well, and these

equations together can be rephrased as one binary quadratic function group:

⎧⎪⎨⎪⎩
A1y

2 +A2yx +A3y +A4x +A5 = 0,

B1y
2 + B2yx + B3y + B4x + B5 = 0,

(7)

where Ai and Bi , i = 1, 2, . . . , 5, are composed of the following factors obtained already: (1) arm’s

angular attitudes: θ̂b , θ̂t , θ̂ ′
b
, θ̂ ′t , θ̂ ′′

b
, θ̂ ′′t , (2) arm’s rotation radius a, and (3) user’s walking distances

d and d ′′. After solving Equation (7), we can achieve the initial configuration of x and y.

4 OBJECT SIZE MEASURE REFINEMENT

So far, we have shown that the object size can be measured using a group of concrete parame-
ters through our object size measure model, and these parameters can be gained using on-board
sensors.

4.1 Need for Refinement

Among all the parameters listed in Table 1, arm’s angular attitudes θ̂t and θ̂b are reliably obtained,
as Figures 7(a)–7(c) unveil.

Other three parameters are directly or indirectly obtained from accelerometers, less reliable
compared with the angular values. For arm’s rotation radius a, as device’s displacement is short,
the mean-noise removal is effective in this case and the accuracy can be improved by average,
as Figures 7(d) and 7(e) show. In Section 7, we find that radius a’s error causes 2% object size
inaccuracy merely.

For walking distance d , although we have significantly improved its accuracy in Section 3.2.1,
the performance is still not precise enough (Figure 5). However, the initialization of parameters x
and y takes d as input, impacted by d’s accuracy as well. In Section 7, we find that the measured
object size is mainly affected by the quality of d , e.g., 12% average performance loss. Hence, we aim
to further refine the calculation of user’s walking distance d , as well as parameters x and y (Sec-
tion 4.2). Moreover, we also upgrade the object size model to further enhance Aware’s performance
(Section 4.3).
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Fig. 9. Parameter refinement. (a) Stride estimation (SE) principle. (b) Per-step errors for gait-based cali-
bration (DI+MR+GE) and stride estimation (DI+MR+SE), and the fusion.

4.2 Parameter Refinement

The calculation of the walking distance d in Section 3.2.1 utilizes horizontal accelerations through
double-integral, remedied by mean-noise removal and gait-based calibration. To further improve
its reliability, we propose to further collaborate with existing stride estimation techniques [1, 2,
34], which mainly adopt vertical accelerations, independent with d’s calculation in Section 3.2.1
by purely the horizontal acceleration sensor readings.

As aforementioned, stride estimation builds a pedestrian model that requires the walking ground
truth as a prior for training. Hence, we propose to utilize the walking distance d derived from
Section 3.2.1 as benchmark to train the stride estimation model, and the model can be gradually
updated further when the user measures more objects (with more computed ds) until it becomes
stable. The distance d is finally from their fusion. This combination can, thus:

• augment d’s accuracy further, as it is less likely that two methods are concurrently
unreliable,

• and avoid explicit model training for stride estimation.

In-band Stride Model Building. The stride estimation model first derives user body’s vertical
displacement (a.k.a. bounce b) within each step using accelerometer readings [34], as depicted in
Figure 9(a). Bounce b, together with user’s leg length r , could form the equation r 2 = (s/2)2 + (r −
b)2, where s is the length of one step. According to Reference [34], we have the following relation:

s = k ·
√
r 2 − (r − b)2

= k ·
√

2br − b2 ≈ k ·
√

2br = k ′ ·
√
b, (8)

where k represents a calibration factor, k ′ emerges user’s leg length r and k as a single factor, e.g.,
k ′ = 4kr 2, and the approximation is because b � r . Thus, factor k ′ needs to be trained in advance
based on a set of measured walking distances.

After a user measures n object sizes, Aware gets {di }, where i = 1, 2, . . . ,n and each di is cal-
culated from Section 3.2.1. If we denote di =

∑mi

j=1 si, j , where si, j is the length of the jth step and

mi is the number of steps within di (e.g.,mi can be counted by the number of peaks from vertical
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accelerations as in Figure 6), then factor k ′ in Equation (8) can be determined by

k ′ = argk ′ min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1
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, (9)

where bi, j is the bounce for the jth step within di . Note that k ′ can be obtained when Aware is
used for the first time, e.g., n = 1, and it can be gradually updated until its value becomes stable.
Through the experiment, we observe that initially k ′ may fluctuate. After it is refined for five to
eight times, k ′ could become stable. Therefore, this model refinement design is efficient in practice.

Walking Distance Fusion. For gait-based calibration (Section 3.2.1) and stride estimation, Aware

maintains their average step lengths, denoted as sд and st , respectively. To measure one object,
after user’s walking, Aware first calculates the distance using two methods independently, e.g., dд

and dt . If the resulting per-step lengths are both greater or less than their respective average value,
then we call it consistent; otherwise, it is inconsistent. The fused df is determined:

df =

{
(dд + dt )/2, if consistent,
(sд + st ) ×m/2, if inconsistent,

(10)

wherem is the number of steps during walking. Figure 9(b) depicts the per-step length error of two
individual approaches are 10cm and 9cm, respectively, and the fused method can further reduce
the error below 7cm on average.

After the stride estimation model becomes stable, we can apply Equation (10) to the acceleration
readings in the initial configuration of parameters x and y (Figure 8) to further refine their values.

4.3 Model Refinement

We propose to further enhance the object size model in this subsection by leveraging the following
observation. When the bottom of the measured area is on the ground (we name it contacting-ground

measure, e.g., the most common case to measure an object’s height as in Figure 8), the obtained hb

should always be identical even a user measures different objects, as hb in this case describes the
height of user’s eyes with respect to the ground. Thus, for a contacting-ground measure, its size
h = ht + hb can be alternatively derived from

h = l × tan(θ ′t ) + hb =
hb

tan(θ ′
b

)
× tan(θ ′t ) + hb , (11)

where θ ′t and θ ′
b

are user’s sight-line angles at the second measurement position, e.g., position (ii)
in Figure 8 that is separated by d from the first position (i), and l is the distance between position
(ii) and the object.

Equation (11) does not directly adopt d (e.g., dominating error source to the final measured h,
even we have significantly reduced d’s error). If we can leverage the identical attribute from the
contacting-ground measures to purify hb with a high precision, then Equation (11) can further
improve h’s accuracy.

Purifying hb . Given one object size measure, Aware, however, is not aware whether the bottom
of the measure area is on the ground or not, and we do not expect users could explicitly provide

such feedback. To first identify such cases, we observe that during the measurement, if both θ̂b

and θ̂ ′
b

are positive, i.e., user arm’s waving stops below the horizontal plane, then it is highly likely
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Fig. 10. Model refinement. (a) Distribution of hb within the candidate set, and (b) the searched hb com-
pared with the measured result.

a contacting-ground measure. Of course, this is not always correct and the selection may include
some undesired measures, e.g., the bottoms of the measured areas are close but not on the ground.
Nevertheless, we find that this rule could serve as a coarse filter to select a candidate set, in which
the majority is our desired measures.

Within this candidate set, the hb from each contacting-ground measure should be centered
around the true hb value. The hb from other undesired measures will be scattered. If we sim-
ply average all hb s from the candidate set to approximate hb ’s true value, then the result will be
drifted by these undesired measures. To solve this issue, we observe that if we project all the hb

values from the candidate set to an axis, the data density around hb ’s true value will be very high.
Therefore, we use a sliding window to compute the density of hb ’s distribution. The position that
leads to the highest density estimates the true hb value, as in Figure 10(a). As a matter of fact, hb ’s
error mainly comes from user’s walking distance d as well. This refinement essentially leverages
the collective distribution of hb to mutually cancel out their non-linear (Gaussian) errors, e.g., the
estimatedhb is very close to the measuredhb value as in Figure 10(b). The refinedhb thus has much
higher precision compared with the walking distance d derived from each individual object size
measure. As the result, Equation (11) can dramatically enhance the performance of the final result.

Now with the high qualityhb , for a new measure, if it is classified into the candidate set, itsh can
be calculated using Equation (11). In Section 7, we find even for an undesired measure within the
candidate set, the calculated h using Equation (11) improves. This is because the error in d over-
whelms the hb ’s difference between the undesired and desired measures within the candidate set.

5 CROWDSOURCING BACK-END

With the object size model design in Sections 3 and 4, we further introduce Aware’s crowdsourcing
back-end in this section. The crowdsourcing engine could fuse individually measured object sizes
and provide users the crowdsourced result.

Geographic Partitioning. To fuse measurements from different users, we should first group these
size measures that correspond to the same object. Therefore, we need each object’s location on the
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ALGORITHM 1: Density-based clustering

1 input: a set of object sizes h = {hi };
2 output: the set p = {pj }, where each pj is the h value of one density peak;

3 hmin = minhi
{h};

4 hmax = maxhi
{h};

5 for search h in [hmin ,hmax ] do

6 for search w in [0,wmax ] do

7 D[h] = D[h] + f (h,w );

8 Conduct curve fitting to D[h];

9 Record the h value for each local maximum peak on the fitted curve as p = {pj };
10 return p;

2D plane at the first place. Although such location information is not directly available, it can be
calculated from:

• User’s location, e.g., position (ii) in Figure 8 obtained from GPS or indoor localization [32].
• Walking direction, e.g., obtained from hardware or software compass [23, 36].
• Distance between the user and object, e.g., l in Figure 8 that can be computed by l =

ht/ tan(θ ′t ).

If a user has a privacy concern for uploading above information, then the crowdsourcing function
can be disabled. Due to sensor noises, e.g., GPS, compass, and so on, and measurement errors, e.g.,
l , we can only infer one possible range about object’s true location based on the information above.
With more ranges obtained from different users, we can gradually shrink its spatial uncertainty. To
this end, we adopt the method in Reference [21] to represent the possible locations for each object
as a trapezoid shaped polygon. All polygons are then projected to the 2D plane to generate a spatial
spectrum, where the intensity of each point on the 2D plane indicates the amount of overlapped
polygons. We can then search for connected spectrum components and each component contains
a vicinity of measured objects [21].

Of course, different objects can be classified into the same connected component, e.g., their
locations are close. We need to further distinguish them before the object size fusion.

Density-based Clustering. For every connected component, we can apply the similar observa-
tion as in the model refinement (Section 4.3). If different users measure the same object, then the
measured h values should form a cluster. We can thus use a sliding window to conduct the data
value density search, and the density peak approximates to the true h value.

Because one connected component may contain different objects with similar sizes, multiple
peaks can appear. One fixed sliding window size w , however, cannot fit all different components,
as the sizes and numbers of objects in each component can be different. To address this issue, we
treat window sizew as a variable and propose a joint search algorithm applied to both object size h
andw in Algorithm 1. For each connected component, we first project all its contained h values to
an axis. We search from the minimum to maximum values ofh, and examine the number of density
peaks to be discovered. For each possible object size value h, we accumulate the data value density,
e.g., f (h,w ) in line 7, by varying w to a sufficiently large sliding window size value, e.g., wmax is
empirically set as 20cm in Section 7. If the current h really represents the size of one object, then
the accumulated result always indicates so; otherwise, they cannot form such a local maximum
value. Figure 11 shows an example of Algorithm 1.
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Fig. 11. Density-based clustering example. The searched h values for four objects by Algorithm 1 are
1.0m, 2.0m, 2.6m, and 3.1m, respectively, very close to the measured ground truths, which are 0.96m, 2.0m,
2.8m, and 3.2m, respectively.

Object Size Inquiry Handling. If a user enables the crowdsourcing function, then after each
object size measure, the measured object size, together with user’s location and direction informa-
tion, will be submitted to the crowdsourcing back-end. For each submission, if its polygon does
not intersect with any existing spectrum component, a new component is formed and the fused
result is just this newly submitted one; otherwise, the polygon overlaps with one existing spec-
trum component. Now for this component, we launch Algorithm 1 to update all density peaks and
classify the submitted object size to the closest peak. The h value of this peak is thus the fused
result, returned to the user.

6 IMPLEMENTATION AND SETUP

We develop an Aware system on Android platforms and experiment with LG watch and HTC
phone.

Mobile Front-end. In the mobile front-end, we use TYPE_ACCELEROMETER and TYPE_
GAME_ROTATION_VECTOR two APIs to acquire three-axis accelerations and the pitch, roll, and
yaw angles to represent device’s absolute attitude, respectively. For the walking distance calcula-
tion, we implement both our gait-based calibration scheme and the state-the-art stride estimation
model [34], as well as the in-band stride estimation model building and the distance fusion. To con-
figure user-dependent parameters x and y, a user waves the arm to measure one object at three
different locations when Aware is launched for the first time. After the initial parameter setting,
when objects are measured, Aware further detects whether they are contacting-ground measures,
e.g., the bottom of the measured area is on the ground. If so, then Aware is able to update the
recorded hb and enhance the result using the refined object size model.

Crowdsourcing Back-end. The crowdsourcing back-end is an advanced feature in Aware. We
implement the density-based clustering algorithm that can distinguish nearby objects of similar
object sizes and further fuse the measured sizes belonging to the same object to further enhance
the measurement accuracy. In this algorithm, we empirically configure the upper bound of the
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Fig. 12. Eight sample objects measured by Aware in the experiment for indoor (left) and outdoor

(right) environments.

sliding window size search range as 20cm. Under the crowdsourcing model, the performance is
evaluated using the crowdsourced result.

Experiment Methodology. With the experiment setup above, we evaluate Aware’s performance
in both indoor and outdoor environments with four users, i.e., 1 female and 3 males with body
heights from 1.68m to 1.85m. We use Aware to measure 40 objects with the ground truth varying
from .65m to 4.25m and each object is measured 6 to 10 times. The distance between each object
and user varies from 2.3m to 9.3m during the measurement. Among the 40 measured objects, there
are 30 height measures (24 contacting-ground cases and 6 hanging in the area cases) and 10 width
measures. Figure 12 depicts several objects that are measured in the experiment. In the experiment,
we also compare Aware with a camera-based method CamMeasure [3], a commercial APP in the
Apple Store. There are some other APPs of this kind in APP stores but they share a similar design
principle, so we do not compare Aware with them individually.

7 PERFORMANCE EVALUATION

Accuracy. We first examine Aware’s end-to-end object size measuring accuracy and plot its per-
unit measurement error. For the object height measure, Figure 13(a) shows that the average error is
8% and 80th percentile error is 12%. For the object width measure, the average and 80th percentile
errors are 14% and 23%, respectively (slightly increased). The object height measure outperforms
the width measure mainly benefits from the model refinement design (Section 4.3), so that we
can use the refined model in Equation (11) to directly derive object height h without using the
derived on-time walking distance. Figure 13(a) indicates that Aware overall achieves relatively
high accuracy.

Impacts from Model Parameters. For all four sets of parameters in our object size model, Fig-
ures 7(a) to 7(c) has shown the angular accuracy is very high and reliable. In Figure 13(b), we
further examine the rest three sets. We first provide the ground truth for the rest parameters and
replace one of them with the calculated value each time. Figure 13(b) shows that “d ,” “a,” and “x
and y” could cause 12%, 2%, and 2% accuracy reduction, respectively. The results indicate that d
is dominating in deriving the object size than other two parameters. As a result, the error from d
impacts more on the derived object size than other two parameters, which motivates us to further
enhance its accuracy in Section 4.

Performance Gain from Refinements. In Sections 3 and 4, we first introduce a primary ver-
sion of Aware and then enhance it by parameter and model refinements. We investigate perfor-
mance gains from such a design in Figure 14. From the result, we see that compared with the basic
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Fig. 13. Aware ’s overall performance. (a) Height and width measures, and (b) the impacts from different
model parameters.

Fig. 14. Performance from different versions of Aware: basic, basic plus parameter refine, and basic

plus parameter and model refine.

version (Aware basic), the parameter refinement (Aware + parR) improves the accuracy of walking
distance d , leading to 3% average error reduction in the object size measure. As the refined model
(Aware + parR + modR) does not directly utilizes user’s walking distance d , the final performance
is further improved by 6.8%, e.g., 9.8% average error reduction in total. Figure 14 indicates that our
enhancement designs are effective, where the parameter and model refinements contribute to 31%
and 69% size measure error reductions, respectively.

Performance Comparison. In this experiment, we compare Aware with CamMeasure [3] that
uses camera to measure the object size. Figure 15(b) shows that for contacting-ground cases, Aware

can achieve comparable performance as CamMeasure, while CamMeasure works poorly for non-
contacting-ground cases as in Figure 15(a). We notice that this is a methodology limitation that
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Fig. 15. Comparison with CamMeasure that uses the camera for measurements. (a) Non-contacting
and (b) contacting-ground cases.

Fig. 16. Object size measure impacted by the user-object distance and walking distance.

exists in a variety of similar approaches as CamMeasure in the APP store. Since Aware has no
special requirements for the to-be measured object and hardware, e.g., camera is unavailable on
wearables, it serves as a more general solution to fulfill the application needs in practice.

Impacts of Walking Distance and User-object Lengths. In this trial, we adopt 0.6m as an unit,
e.g., the ground is covered by tiles and the tile length is 0.6m, and experiment with the object of
size 2.75m by varying walking distance in Figure 16, where the color density means errors, e.g.,
a deep density indicates a small error. We find when user’s walking distance is sufficient long,
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Fig. 17. Aware ’s performance from different users. (a) Height and (b) width measures.

e.g., more than five tiles, the object size measure error is small in general. This is because user’s
sight-line rotation difference between two measuring positions becomes larger, e.g., providing
better signal-to-noise ratios against the operational uncertainty. However, in practice, there is not
always enough space to walk for a long distance to measure object size. Figure 16 suggests the
walking distance length within 5 to 9 steps is sufficient in common cases.

However, a smaller user-object distance certainly improves the measuring results, because in
this case the object is relatively large in user’s eyes and it is more reliable for users to point at the
boundary of the measure area on the object. According to the experiment, the Aware is most effec-
tive when the ratio between the user-object distance and object size is less than 13 × 0.6/2.75 = 2.8.

Performance of Different Users. In Figure 17, we further plot the performance of Aware

achieved on different users with body heights from 1.68 to 1.85m. From the result, we can see Aware

has stable performances across different users (around 8% and 12% on average for height and width
measures, respectively). The 75th percentile errors are approximately 11% and 20% across different
users for height and width measures, respectively. These results indicate Aware can achieve stable
and satisfactory performance across different body sizes.

Execution Time. We examine the execution time of Aware on both smart watch and smart phone.
The computational complexity of Aware is lightweight, which can be comfortably afforded by these
two types of platforms. The average execution time to calculate the object size on smart watch
is 0.34ms and it occasionally climbs up to 0.88ms. On smart phone, the average and maximum
execution time is reduced to 0.22ms and 0.48ms, respectively.

Crowdsourcing Performance. In this trial, we first evaluate the density-based clustering
(Algorithm 1 on p. 15), followed by the object size measure accuracy with crowdsourcing.

In Figure 18, we vary the number of objects (with similar but different sizes) in the same vicin-
ity. When the objects are few, the searched peaks by Algorithm 1 closely match their ground
truth values. When the object number increases, the searched peaks may drift due to other objects
with similar sizes. Figure 18 implies that when more objects co-exist in the vicinity, some addi-
tional labels, e.g., user’s textual or audio annotations, can be further adopted to jointly distinguish
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Fig. 18. Evaluation on the density-based clustering algorithm.

Fig. 19. Crowdsourcing accuracy by varying the number of (a) crowds and (b) objects.

different objects for improving the clustering performance, instead of using their sizes merely. Such
an opportunity has been explored in AR services [10], and we plan to leverage it in the future.

In Figure 19, we investigate Aware’s end-to-end performance with crowdsourcing. Figure 19(a)
first shows that after sufficient crowds contribute results for the same object (without clustering
errors), the accuracy is remarkably improved, e.g., 2% error. In Figure 19(b), when objects of similar
sizes co-exist in very close vicinity and the object number is small, e.g., 3, the average error per
meter is 2% merely, which improves the performance without crowdsourcing (“without crowd”)
by 78%. Even when the object number is increased to 6, due to the peak drift in Algorithm 1, the
accuracy decreases to 7%, which still outperforms “without crowd” by 22%. The result shows that
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crowdsourcing is indeed capable to augment the object size accuracy, motivating users to enable
this function and share their measured results.

8 RELATED WORK

We review the following works in the literature that are related to the design of Aware.

Contactless Object Size Measuring. Computer vision can measure the object size from multiple
images pictured at multiple places in a contactless manner [6, 17]. OPS [17] is proposed to measure
the distance between the user and object, which can be extended for the object’s height measure.
OPS, however, requires the desktop-type CPU capability, not afforded by wearable and mobile
platforms. The computation overhead of other recent works, like Reference [6], can be even higher,
as they demand hundreds of images about the same object and utilize expensive computer vision
algorithms in the design. Although some methods [3, 19] can run on mobile devices locally, they
suffer the limitations that the measured area must touch on the ground, as well as the difficulty
of calibration. However, computer vision approaches [8, 19] naturally require the device equipped
with the camera (unavailable on wearables) and mainly work in the daytime. To overcome above
limitations, we design Aware by purely using motion sensors, which are widely available on a
variety of wearable and mobile platforms. So far as we know, Aware is the first system of this kind
in the community, positioned as a convenient solution to estimate the object size to fulfill a variety
of application needs.

Walking Distance Calculation. In Aware, user’s walking distance is usually short, e.g., a few
steps. This unique feature prohibits the adoption of GPS, as its location error about 10 to 20 meters
[20, 21] could overwhelm the final result. Although state-of-the-art localization techniques have
significantly advanced the positioning accuracy [33], they are not suitable for Aware, as they reply
on the infrastructure support, including RFID readers [7, 25, 29], Wi-Fi access points [12, 27, 32,
35], visible light beacons [13–15], and so on. However, users may merely use Aware’s mobile front-
end in diverse environments, the walking distance calculation needs to be completely local on the
device—no ambient infrastructures required.

Traditional stride estimation techniques [1, 2, 9, 34] could use motion sensors to estimate the
length of a user’s each walking step, and their summation leads to the total walking distance.
However, they need to manually measure the walking ground truth to train a stride estimation
model in advance. Our design in Aware, leveraging user’s gait consistence feature to calibrate the
double-integral result, is compatible to these existing techniques, which provides them an in-band
stride model building opportunity. In addition, we propose a fusion design (between our gait-based
calibration scheme and the state-of-the-art design [34]) to augment the walking distance accu-
racy further, as they conduct independent calculations using different sensor readings (horizontal
vs. vertical accelerations). It is less likely two methods are concurrently unreliable.

Motion Sensor Processing. We mainly review accelerometers and gyroscope two types of mo-
tion sensors related to the Aware design. Accelerometers have been adopted in many mobile ap-
plications. The preliminary usage is to treat accelerometer readings as a mobility hint or indica-
tor, e.g., counting steps, behavior detection [22], transport model classification [24], and so on.
Some studies later leverage accelerometers to calculate the moving distance of the device through
double-integral. However, the result is erroneous [34]. Recent work [30] finds that when device’s
displacement is short, the accuracy can be dramatically improved by the mean-noise removal.
Gyroscope is widely used for orientation estimation in robotics, by leveraging the Kalman filter
[18], error propagation model [11], data fusion [16]. A3 [36] is later proposed for mobile platforms
to achieve accurate phone attitude detection. Recently, mobile operating systems even provide
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in-built APIs [5] for developers to precisely track device’s attitudes in an absolute coordinate
system. In Aware, we leverage above technical advances. For accelerometers, as the mean-noise
removal technique is most effective only when the device’s moving trajectory is short, we thus
further propose the gait-based calibration scheme and a fusion design in the walking distance
calculation.

Crowdsourcing Applications. The Aware design is orthogonal to many third-party crowdsourc-
ing services [4, 10, 26, 28]. The object size database maintained by Aware can be used to enrich
their data type by providing them the meta object size information. In Aware’s crowdsourcing
back-end, we leverage the spatial partitioning method in Reference [21] to identify nearby objects,
based on which we further propose a density-based algorithm to distinguish different objects of
similar sizes.

9 LIMITATIONS AND DISCUSSIONS

We summarize the requirements and limitations of the current Aware design in this section.
(1) Orientation of the mobile device: According to the current Aware design, the user needs

to stretch her arm during the waving, so that the device’s body (y-axis) is along the user’s arm
(instead of being in an arbitrary orientation) as depicted in Figure 4, and then looks at a fixed
point on the device, e.g., the middle position of the phone’s boundary in the measurement. This

requirement aims to obtain the angle of θ̂t or θ̂b , which is needed in deriving the object size by
Aware.

(2) Attitude of the user’s head: In Aware, we need the user’s cooperation not to raise or
bow her head during the object size measurement. Since Aware calculates θt and θb in Figure 4
for deriving the object size, the raising or bowing of the user’s head will thus impact the system
performance. This requirement could cause certain inconvenience to the user, and we plan to study
the solution when the user’s head is in a more nature attitude as the future work of this article.

(3) Walking distance measurement: When a user walks, the actual trajectory of the user’s
body may not be a straight line; it is usually a zigzag pattern. If we calculate the length of each
zigzag side and then add them together, then the result becomes less accurate. Therefore, in Aware,
we compute the displacement from the starting point to the end point of the user’s walking, which
aligns with the user’s actual walking distance. However, we need the user’s cooperation to hold
her phone without introducing an extra movement with respect to the user’s body (e.g., the hand
that holds the phone can lean on the body) during the user’s walking.

10 CONCLUSION

This article presents Aware, which addresses three major challenges to turn our wearable or mo-
bile device into a virtual ruler using motion sensors. The Aware design could enable a rich set of
applications that require a convenient and accurate way to measure object size. We implement
a prototype system on Android platforms. Extensive experiments with four users show that the
error of the object size measure by Aware can be 8% on average and crowdsourcing can further
improve the accuracy by 78% to 22% in different scenarios.
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