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Abstract—Mobile phones nowadays are equipped with at least
dual microphones. We find when a user is typing on a phone, the
sounds generated from the vibration caused by finger’s tapping
on the screen surface can be captured by both microphones, and
these recorded sounds alone are informative enough to infer the
user’s keystrokes. This ability can be leveraged to enable useful
application designs, while it also raises a crucial privacy risk that
the private information typed by users on mobile phones has a
great potential to be leaked through such a recognition ability.
In this paper, we address two key design issues and demonstrate,
more importantly alarm people, that this risk is possible, which
could be related to many of us when we use our mobile phones.
We implement our proposed techniques in a prototype system and
conduct extensive experiments. The evaluation results indicate
promising successful rates for more than 4000 keystrokes from
different users on various types of mobile phones.

I. INTRODUCTION

Mobile phones nowadays are commonly equipped with (at
least) dual microphones [1]. The one at the bottom of a phone
receives the user’s voice in the phone call, and the other one on
the top of the phone measures the ambient noise level for the
noise cancellation. Multiple microphones lead to a significant
advance for improving the phone-call quality [2]. However, in
practice, users need to type on their mobile phones from time
to time, e.g., writing messages, inputting passwords, etc. In this
paper, we find when a user is typing, finger’s tapping on the
phone’s screen surface could cause a vibration of the touching
point on the device. The sound generated from this vibration
can be captured by both top- and bottom-microphones on the
phone as illustrated in Fig. 1(a), and these recorded sounds
are informative enough to infer the user’s keystrokes.

On a positive side, recent studies have exploited the ability
of microphones to develop various useful applications [3],
[4], [5]. This keystroke recognition ability could be further
leveraged in the future to develop a new input modality on
a ubiquitous surface [6] using two lightweight microphones
only. On the contrary, this also raises an immediate and serious
privacy concern — plenty of the user’s private information
(frequently typed by users on the phone, e.g., personal data,
passwords, messages, etc.) has a great potential to be com-
promised through mobile phones when the microphone data
is hacked (attack model is in §II-C) and the barrier to launch
this hacking is not high [7]. Hence, in this paper, we focus on
studying this keystroke recognition ability from an attacking
perspective to alarm people such a potential privacy leakage
risk that could severely sacrifice the user’s typing safety.
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Fig. 1: (a) The sounds generated from the vibration (of the
touching spot on the device) caused by finger’s tapping on
the screen can be captured by microphones. (b) Typical
length of a key and distance between two adjacent keys.

We would like to note that this paper is not intended to
say the user’s tapping necessarily leads to the typing privacy
leakage. Because such tapping sounds are relatively weak,
they can be overwhelmed by the strong ambient noises, e.g.,
people’s conversations nearby, or the device vibration triggered
by the keyboard software and operating system (attack model
is in Section II). However, it is indeed also common that the
sounds generated from the vibration caused by the user finger’s
tapping can be recorded by microphones clearly in practice,
which are thus worth drawing our attention on this potential
privacy leakage risk. To demonstrate this keystroke recognition
ability, we need to address the following two challenges.

1) Weak acoustic signals. Although microphones can receive
the sounds from the vibration caused by finger’s tapping when
a user is typing, they are very weak signals, e.g., users are even
not aware of their existence usually. On the other hand, due
to the limited size of a mobile phone, the length of each key
and the distance between two adjacent keys (Fig. 1(b)) are
short normally, e.g., around 1 cm and 3 mm [7], respectively.
With a maximum microphone sampling rate on many phones,
e.g., 192 KHz, the resolution (i.e., the distinguishable distance
cross two consecutive acoustic samples that is 1.7 mm with
the 192 KHz sampling rate) in principle can recognize user’s
keystrokes on different keys. However, the screen tapping is
a subtle motion and its produced sounds are weak with low
signal to noise ratios (SNRs). This challenges the precise seg-
mentation and feature extraction for the recorded sounds in the
first place, because a slight signal processing inaccuracy may
bring the errors easily overwhelming the desired resolution. As
a result, if this issue is not addressed, the consequent keystroke



recognition design is not viable.
2) Unsupervised keystroke recognition. Even the acoustic

signals were precisely processed finally, the user’s keystrokes
still cannot obtained immediately, because the adversary may
not have the labelled ground truth from the victim user to
train a classification system to recognize this user’s keystrokes.
Hence, a more practical setting is to achieve an unsupervised
keystroke recognition design, e.g., the adversary utilizes her
own data to train a classification system, yet it could be
further applied to a new victim user as well. However, different
people may have detailed typing behavior differences, leading
to different keystroke features. As a result, an effective design
to largely extract user-independent keystroke features to enable
the recognition is needed.

To address above challenges, we first decompose the orig-
inal recognition task (for all the keyboard keys) into a series
of recognition tasks with smaller “sizes” (e.g., less keystrokes
to be recognized for each). This could avoid the requirement
on the high-standard input data to recognize a large amount
of keys simultaneously. In particular, we utilize the time
difference of arrival (TDoA) [8] of the generated sound for
each keystroke measured by two microphones to divide all the
keys into three groups. Then we can train three classifiers for
each group. However, the recorded acoustic signals are weak
with low SNRs as stated above. It is not straightforward to
precisely identify the starting point of each sound wave that
corresponds to one keystroke, whereas if this identification
is inaccurate, the pre-grouping will be wrong and the final
result cannot be correct. We thus propose effective de-noise
and segmentation designs to tackle this issue.

On the other hand, we leverage the auto-encoder framework
from the deep learning domain [9] to extract the representative
features to achieve good recognition performance even with
the low-SNR data as input. In addition, we further leverage the
auto-encoder to fulfill an unsupervised keystroke recognition
system design to avoid requiring the labelled ground truth
from the victim user. Our basic idea is to cluster different
keystrokes and integrate the clustering-related loss functions
into the neural network design for keystroke recognition. By
doing so, the entire design does not rely on any ground truth
data from the victim user to accomplish the system training.
Instead, the system will automatically mine the representative
features that could lead to the desired number of clusters, and
the preserved features tend to be more user independent finally.

To demonstrate the efficacy of above designs, we develop
a prototype system, named TapLeak. We conduct extensive
experiments with six volunteers and we act as the adversary
to attack more than 4000 users’ keystrokes on different types
of mobile phones, wherein the volunteers’ data are not used
in the system training. The results show that TapLeak’s top-
1 successful rate is 84% and the top-3 accuracy increases to
92%. In summary, we make the following contributions.
• We demonstrate the possibility to infer user’s keystrokes

only using the sounds from finger’s tapping on screen and
revealing (more importantly alarm people) the potential
typing privacy leakage risk that may not be viable before.

Fig. 2: The sounds generated due to the finger’s tapping on
the screen received by the top-microphone (the 1st row)
and the bottom-microphone (the 2nd row) on a mobile
phone (Samsung Galaxy S7) in three environments with
different background noise levels: (a) a quiet library (35
dBSPL noise), (b) a normal office (55 dBSPL noise), and
(c) a noisy canteen (70 dBSPL noise), respectively.

• We propose effective techniques to address the weak
acoustic signals and unsupervised keystroke recognition
two main challenges in designing TapLeak.

• We develop a prototype system and conduct extensive
experiments by attacking different users’ more than 4000
keystrokes on different mobile phones.

The rest of this paper is organized as follows. We introduce
the preliminary and attack model in Section II. The TapLeak
design is detailed in Section III, and the system evaluation is
conducted in Section IV. We review related works in Section V
before the conclusion in Section VI.

II. PRELIMINARY AND ATTACK MODEL

In this section, we introduce the preliminary and the attack
model before we detail the TapLeak design in Section III.

A. Detectable Sounds due to Finger’s Tapping

Although the sound generated due to user’s finger tapping
on the screen is weak, e.g., users do not hear them usually, the
microphones on the mobile phone are near the sound source
and sensitive enough to capture them. In Fig. 2, we collect
such sounds in three environments with different background
noise levels, including a quiet library, a normal office and a
noisy canteen. From the result, we can see that the sounds
are detectable by both microphones, even in the noisy canteen
scenario. We repeat the experiments using different phones
and obtain a similar result. This brings an opportunity to infer
the user’s keystrokes through such recorded sounds.

For these recorded sounds, we further analyze their charac-
teristics and have the following observations:
• Time domain: for each keystroke, the recorded sounds last

for around 40 ms, leading to 7680 sampling points at the
maximum sampling rate 192 KHz [10] on many phones.

• Frequency domain: the energy of the recorded sounds
mainly fall in the range less than 2000 Hz, which could
be mixed with the background noise.

We consider these factors for designing TapLeak in Section III.
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Fig. 3: (a) Illustration of the TDoA measure for tapping
key “E”. (b) Representative hyperbolas for each group.

B. Distinct Sound Features

For these detectable sound waves, we further investigate
their distinct features to be used in the TapLeak design. In
particular, we characterize these features from temporal and
frequency two dimensions.
Temporal features. We can record the sounds for both
microphones at the same time [11]. Since the keyboard is
closer to the bottom-microphone usually, when a user types
on the screen, there exists a time different of arrival (TDoA)
for the generated sound received by two microphones, i.e.,
∆t = dt−db

v , where dt and db (in Fig. 3(a)) represent the
distances to top- and bottom-microphones respectively, and v
is the speed of sound. However, the TDoA values for different
tapping locations may not be unique and all the locations with
the same TDoA values could form a hyperbola with respect
to the two microphones’ locations. According to the 192 KHz
sampling rate, we can draw more than 50 hyperbolas covering
the keyboard area on a phone (this number can vary slightly
due to the phone size).

To avoid recognizing all the keys simultaneously (Section I),
we can classify all the keys into groups and then recognize
them in each group only. In TapLeak, we view each row on
the keyboard as one group and there are thus three groups
in total. For each group, there could be a set of hyperbolas
(with different TDoA values) overlapping with all the keys in
this group, and we select the hyperbola with a median TDoA
value in the set to represent this group. Fig. 3(b) illustrates
the three representative hyperbolas for each group. We note
that the selection of the hyperbolas for each group could be
different on different phones, which however is an one-time
effort. As we discuss soon in the attack model, we assume that
the adversary knows the specific phone type of the victim user
and the adversary can thus complete this selection in advance.

In summary, the temporal difference (TDoA) first classifies
the received sounds into one of three key groups (according
to the closeness to the three representative hyperbolas), based
on which we will further recognize them inside each group.
Frequency features. Mobile phone is a rigid object but it
may have heterogeneous densities and structures at different
places inside the device. As a result, when the user’s finger taps
different spots on the screen, the frequency spectrum of this

Fig. 4: Spectrum of the keystrokes on keys (a) “Q”, (b)
“W” and (c) “P” in one group, respectively.

vibration exhibits different features, which in turn generates
the acoustic sounds with distinct features. Therefore, we can
further distinguish different keys in each group according to
such frequency-domain features. For instance, Fig. 4 shows
the spectrum of keystrokes on keys “Q”, “W” and “P” in the
first group (row), respectively. We can see that for keys “W”
and “P”, which are far away to each other, their spectrums
are quite different. Moreover, for the neighboring keys “Q”
and “W”, their difference still exists yet becomes less obvious
from our manual observation. Thus, we propose to leverage
neural networks to extract their subtle differences to enable
the keystroke recognition (Section III).

C. Attack Model

The goal of this attack is to infer the user’s keystrokes on
a mobile device using the finger’s tapping sounds captured by
device’s microphones We consider the following attack model.

1) Phone and keyboard types. We assume that the adversary
has the prior knowledge of the type of the victim’s mobile
phone and the keyboard, so as to know the phone’s size and
select the representative hyperbolas for each group in advance,
e.g., adversary can peep in the victim’s vicinity. Moreover, in
this paper, we focus on the keystroke inference on the standard
English keyboard from mobile devices in a portrait orientation.

2) Ambient noises. In TapLeak, we consider the impact from
background noise. However, we assume that there are no other
ambient noises that dominate the recorded sounds, e.g., loud
conversations of people nearby. The adversary can launch the
attack selectively to minimize the influence from such ambient
inference noises from the environment.

3) Software generated signals. It is possible that the oper-
ating system generates a sound through the speaker and/or a
device vibration for each keystroke during the typing. These
functions can be disabled in the device setting. In our current
design, we primarily assume they are disabled, while we also
investigate their impacts through experiments in Section IV.

4) Hacking microphone data. We assume that the adversary
can access two microphones of the victim’s phone to collect
the microphone data and send them out. To this end, the
adversary can develop a malicious APP as a Trojan [12]. The
adversary can disguise the Trojan as some useful legitimate
APP or game and publish it to the APP market to fool the
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Fig. 5: Illustration of the working flow to infer the user’s keystrokes in TapLeak with three main steps.

Fig. 6: Pre-processing to identify the starting point for each keystroke. Spectrum of (a) the raw sound wave, (b) the
sound after Wiener filter and (c) the sound after Wiener filter plus a further difference amplifying.

victim to install, which provides the functions, e.g., voice
recognition, to gain the permission to access microphones [13]
during the installation of the Trojan APP. Once it is installed,
this APP listens in the background and sends collected micro-
phone data to the adversary.

III. DESIGN OF TapLeak

The working flow of TapLeak is illustrated in Fig. 5, which
contains three main steps:
• Signal segmentation. For the recorded tapping sound

waves, the adversary needs to identify the starting point
for each keystroke precisely, challenged by the relatively
high noise levels, e.g., low SNRs.

• Pre-grouping. For the segmented sound clips from both
microphones that correspond to one keystroke, the adver-
sary needs to further synchronize them to compute their
TDoA value for pre-grouping.

• Keystroke recognition. According to the pre-grouping re-
sult, the adversary selects the neural network correspond-
ing to the current group for the keystroke recognition.

We now detail the design of each step in the rest of this section.

A. Signal Pre-processing and Segmentation

For the recorded tapping sound waves, the first step is to
identify the starting point for each keystroke and then segment
them as a series of sound clips (one clip corresponds to one
keystroke). So the adversary obtains a stream of sound clip
pairs (from two microphones), which will be used for the pre-
grouping module in Section III-B.

1) Design challenge: The challenge in this first step is
the high-standard precision requirement on the starting point
search. Due to the limited microphone sampling rate, e.g., 192
KHz, one sampling point difference leads to a 1.7 mm error
in the distance calculation to each microphone. However, the
recorded sounds are weak with low SNRs and the background

noises could hide the starting pointing to prevent a precise
boundary search. Fig. 6(a) shows the spectrum of the raw
sound saves recorded with three keystrokes. Although it is
easy to tell the existence of these three keystrokes, the exact
starting point of each keystroke is blurred due to the noise.

As stated in Section I, the length of a key and distance
between two adjacent keys are short, e.g., around 1 cm and
3 mm, respectively. The search error of the starting point can
thus easily cause an inaccurate TDoA measure later, which,
as a direct consequence, could lead to a wrong pre-grouping
result and also the final keystroke recognition result.

2) Solution: We propose the following pre-processing be-
fore the segmentation to overcome this issue.

Because the keystroke signal and the noise have an overlap
in the frequency domain, we cannot apply the band-pass
filter to remove the noise directly. Thus, we leverage Wiener
filter [14] to handle such frequency-overlapped noise. Wiener
filter requires to collect one short piece of noise samples, e.g.,
0.25 seconds, before the filtering. This aims to “analyze” the
noise’s frequency characteristics to determine the parameters
in the filter, which then can be adopted to process the recorded
sounds. Fig. 6(b) shows the result after we apply the Wiener
filter. We can see the background noise is excluded substan-
tially and the starting point becomes more identifiable.

However, the starting point’s boundary is still not “sharp”
enough in Fig. 6(b) due to the residual noise. After analyzing
this spectrum, we observe that the noise becomes much
weaker (compared with keystroke sounds) already. Therefore,
we propose to further amplify the difference between the
keystroke sound and noise, so that the keystroke sound could
dominate the spectrum finally with clearer boundaries for each
starting point. To this end, for the sound wave after the Wiener
filter, we compute the square for each time step t as follows,
which can make the large amplitude even larger and a small
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Fig. 7: Analysis of the TDoA error if we compute TDoA
using the search starting points directly. The amplitude of
the sound from the bottom-microphone is stronger because
user’s tapping position is closer to this microphone.

amplitude (e.g., <1 for noise) even smaller:

s′(t) =
∑t+W

n=t
s2(n), (1)

where s(n) is the amplitude of the acoustic signal and W is
a sliding window and we set its size |W| to 20 in our current
design (e.g., approximately 0.1 ms with the 192 KHz sampling
rate). Fig. 6(c) shows the spectrum for s′(t), which now has
a sharper starting point for each keystroke.

After the signal pre-processing above, we can segment the
sound waves into clips with a clearly identified starting point
for each. Two clips (from two microphones) that own a similar
starting point in the time domain (e.g., correspond to the same
keystroke) then form a pair for the pre-grouping module.

B. Pre-grouping based on TDoA

As aforementioned in Section II-B, we divide the keyboard
keys into three groups and recognize keystrokes inside one
group only, to avoid recognizing all the keys each time1. In
particular, for each sound clip pair obtained after the signal
segmentation, we calculate their TDoA value with respect to
the two microphones. As discussed for Fig. 3(b), the adversary
can determine the representative hyperbola (with the median
TDoA value) for each group in advance. Then the current
sound clip pair will be classified into the group whose repre-
sentative hyperbola’s TDoA is closest to this sound clip pair’s.
The adversary will later utilize the neural network of this group
to conduct the keystroke recognition in Section III-C.

Although we can record the sounds for both microphones at
the same time [11] and have also identified the starting points
for both sound clips in one pair already, we do not suggest
to compute their TDoA directly due to the following reason.
Denote T̂b and Tb as the actual and our searched starting points

1To amplify the difference between the tapping sound and the residual noise
for precisely identifying the starting point, Eqn. (1) could distort the original
sound wave, which becomes less effective for recognizing keystrokes. Hence,
we leverage it for the starting point search only. Afterwards, we still use
the sound waves after the Wiener filter merely for the consequent keystroke
recognition. Because they are still mixed with certain noises, it is necessary
to avoid recognizing all the keys each time and use pre-grouping to improve
the performance as evaluated in Section IV.

for the sound clip received by the bottom-microphone. The
search error for this starting point is Eb = Tb − T̂b. We can
similarly define the error for the top-microphone as Et =
Tt − T̂t. Therefore, the calculated TDoA equals to

TDoA = (T̂t − T̂b) + (Et − Eb). (2)

In fact, the error from the second term Et − Eb can be
further minimized. To this end, we can fix the calculated
starting point for one microphone, and move the sound clip
from the other microphone to perform the cross-correlation [8].
As these two sound clips essentially refer to the same audio
content, the peak of the cross-correlation indicates that they
are best overlapped with each other, and the starting point
for the second microphone can be determined. So the cross-
correlation basically introduces the starting point search error
only once. Through our experiment in Section IV, this can
improve the pre-grouping accuracy by 30%.

C. Unsupervised Keystroke Recognition

The adversary finally needs to train one neural network
for each group to recognize the keystrokes inside the group.
Because the keyboard is closer to the bottom microphone
usually (so its recorded sound is stronger), we thus use
the segmented sound clips from this microphones for the
keystroke recognition. However, the adversary does not have
the labelled ground truth data from the victim user to train each
neural network. Thus, the adversary is expected to achieve an
unsupervised design, e.g., using her own data, to avoid the
demand on the victim’s data in the system training. To this end,
we propose to utilize an advanced neural network framework,
named auto-encoder, to extract the most representative features
from the input sound clips and then leverage it to accomplish
the unsupervised recognition system design.

1) Auto-encoder framework: An auto-encoder neural net-
work contains the following four major components usually:
• Input: when the neural network handles acoustic signals,

we normally provide the Mel-Frequency Cepstrum Coef-
ficients (MFCC) [15] of the acoustic signal as input [16].

• Encoder: the encoder fulfills a non-linear conversion to
extract the most representative features from the input.

• Representative feature: the extracted feature is viewed
as a new representation of the original input (by preserv-
ing the most essential characteristics for a learning task).

• Decoder: the decoder adjusts the representative feature
by utilizing it to recover the original input.

According to the similarity between the original input and the
recovered input by decoder, we can define a recovery loss as:

Lrec =
1

N

∑N

t=1
f(xi)− h(f(x(t))), (3)

where x(t) is the input at time stamp t, N is the number of
input data, f(·) is the encoder and h(·) is the decoder. To
couple above auto-encoder network with a specific learning
task, the “representative feature” could serve as the input of
the learning task, and its own loss function will be combined
with Lrec. The training aims to minimize the overall loss.
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2) Unsupervised recognition with auto-encoder: With the
auto-encoder framework stated above, we now introduce our
recognition design in TapLeak.

Encoder and decoder designs. The auto-encoder frame-
work is widely utilized in the computer vision domain [17],
wherein the input is the 2D image. Therefore, the encoder and
decoder are usually implemented by a multi-layer perceptron
or 2D convolutional neural network (CNN) [18]. For the
acoustic signal, we can apply the short-term Fourier transform
(STFT) and then compute its MFCC to obtain its MFCC
spectrum (Fig. 8), which can also be viewed as a 2D “image”:
• Its x-axis is time. We set its length as 40 ms that can

cover the segmented sound clip in the time domain.
• Its y-axis is the frequency. We set its range from 0 to 2

KHz to cover the frequency range of the tapping sound.
• The value of (x, y) indicates the frequency response.
Because the length of the spectrum’s x-axis is short and the

useful features are mixed with noises (low SNRs), we find that
using one perceptron or 2D CNN to analyze such a spectrum
image as a whole could bias the feature extraction to the higher
SNR parts and miss many useful yet less “obvious” parts.

Therefore, we propose to divide the spectrum image input
into several strips along the time domain, e.g., the duration of
each strip is set to 7 ms empirically in our current implementa-
tion. For each strip, we associate a three-layer CNN to analyze
its feature. The purpose of this design is to fully modify
the entire spectrum image to generate the final representative
feature. In particular, we denote xi as the the ith input strip,
and the corresponding CNN f i(xi) can be expressed as:

f i(xi) =
∑n

j=1

∑m

k=1
xij,k · wk, (4)

where n is the length of the input xi, w is the coefficient
vector of CNN, and m is the length of w. Each CNN in
the decoder can be designed similarly. Through the evaluation
in Section IV, we find this encoder and decoder design can
effectively improve the recognition performance (Section IV).

Recognition design. With the auto-encoder framework, we
next fulfill the keystroke recognition design. Supposing for
each keystroke sound clip, the adversary has its ground truth
(i.e., which key is tapped). The adversary can train another
neural network for classification (recognition), wherein the
input of this network is the representative feature extracted
by the auto-encoder and the output is the different keys to
be recognized in the current group. However, the problem is
that this recognition ability will be only effective for the user
whose data is used in the system training, while the adversary
may not have such ground truth from the victim user.

To overcome this issue, we find the adversary can collect
her own tapping sound data but without requiring the ground
truth of the data (otherwise the classifier can mainly recognize
adversary’s tapping). Then the adversary applies the clustering
algorithm to cluster the representative features extracted from
the auto-encoder, and the total number of clusters equals to
the number of keys to be recognized in this group, which
is known by the pre-grouping in advance. With the tailored
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Fig. 8: Illustration of the auto-encoder based unsupervised
keystroke recognition design.

loss functions defined below, we can combine them with
the recovery loss Lrec, and train the auto-encoder and the
clustering model, e.g., K-means [19], at the same time. By
doing so, the overall system does not rely on any ground truth
data to accomplish the training. Instead, the auto-encoder will
automatically mine the representative feature that could lead
to the desired number of clusters, and the preserved features
tend to be more user independent.2 To fulfill this design, we
introduce the following two loss functions for clustering.

Inner-cluster distance Linner. To cluster one data point, we
can compute its distance to all the cluster centers and assign it
to the cluster with the smallest distance. For a good clustering,
the data points in one cluster should gather tightly near their
cluster center. As a result, the average distance between the
data points and their closest cluster center is one metric to
quantify the quality of the clustering result. We thus define
the inner-distance loss term as the average distance between
the data points and their cluster centers as follows:

Linner =
1

N

∑N

i=1
||f (t)(ai)− c(t)i ||, (5)

c
(t)
i = arg min

c
(t−1)
j
||f (t)(ai)− c(t−1)j ||, (6)

where f (t)(·) is the encoder at the tth iteration in the training,
ai is the feature value of the ith sound clip input, N is the
total number of inputs used for training, and c(t)i is the closest
cluster center for ai. Minimizing Linner basically tends to
gather all the features in one cluster close to each other.

Inter-cluster distance Linter. On the other hand, the dis-
tance between cluster centers is also important to achieve a
good clustering. For two neighboring clusters, if the distance
between their centers is small, it is more likely to incur a
clustering error. However, such inter-cluster distance cannot be
used to define a loss term directly, because the auto-encoder
and the clustering model need to be trained in an iterative
manner. For a given iteration to optimize the auto-encoder,
all the clustering centers are fixed from the last iteration,
which thus form a set of constant values of distances between

2Because the area that the user’s finger touches the screen during typing
is small, the characteristics from the vibration of the tapping spot likely
dominates the feature of the generated sound. As a result, it is possible to
recognizes keystrokes in an unsupervised manner.
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clustering centers. Such constant distances cannot be used to
update weights of the current clustering model.

Fortunately, we observe that for each data point belonging to
cluster c, if their distances to the centers of all other clusters
(not c) increase, this implies that the cluster c tends to be
farther away from other clusters, because the center of one
cluster is computed as the average coordinates of data points
in this cluster. So we define the inter-distance loss term as:

Linter =
∑N

i=1
||f (t)(ai)− s(t)i ||, (7)

s
(t)
i = arg min

c
(t−1)
j 6=c

(t−1)
i
||f (t)(ai)− c(t−1)j ||, (8)

where s(t)i is the second closest cluster center to the ith input
data in iteration t. Maximizing Linter thus tends to make
different cluster centers separate away from each other.

Overall loss function Lloss. With the two loss functions
introduced above, the final loss function in TapLeak is:

Lloss = Lrec + α× Linner − β × Linter, (9)

where α and β are two parameters. With Lloss, we can train
the auto-encoder and clustering model together in an iterative
manner [20]. The cluster centers are randomly initialized at
the beginning. The total number of clusters equals to the total
number of keystrokes to be recognized. Then in any iteration
that optimizes the auto-encoder, the cluster centers computed
from the previous iteration are fixed and the overall loss Lloss

is calculated by the gradient descent to turn the auto-encoder.
After the optimization of the auto-encoder, the cluster centers
will be updated using the auto-encoder obtained so far. This
training process repeats until the overall loss becomes stable
and cannot be further reduced.

After training, when a new sound is provided, it will be pro-
cessed by the encoder to obtain its representative feature, based
on which we further classify it into one cluster corresponding
one keystroke. We note that because TapLeak does not require
any labelled ground truth in the training, this system is more
user independent. Therefore, the adversary can use it to infer
the keystrokes from a victim user whose data is not used in
the system training any more, as evaluated in the next section.

IV. SYSTEM EVALUATION

In this section, we evaluate the performance of TapLeak.

A. Experiment Setup

Implementation. We implement TapLeak on Samsung Galaxy
S7, Nexus 5X and Huawei P30 Pro as the victim devices.
We invite one volunteer as the adversary. For each device, we
collect 200 keystrokes for each key from the adversary to form

Operations Inference time
Signal processing and pre-grouping 200 ms

Recognizing one keystroke in group 1 15 ms
Recognizing one keystroke in group 2 14 ms
Recognizing one keystroke in group 3 14 ms

TABLE I: Inference time of different components.
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Fig. 9: Overall performance of TapLeak for each key.

the training data set. We develop TapLeak using a desktop with
Intel i7-8700K CPU and Nvidia GTX 2080Ti GPU. As stated
in the system design, we train TapLeak for each type of the
mobile phone to launch the attack. The training of the neural
network for one group takes around 5 hours. Table I further
shows the time consumption to infer one keystroke in different
components (measured on the desktop), e.g., the average time
cost is nearly 215 ms for one keystroke inference.

Methodology. To evaluate the system performance, we invite
six volunteers (different from the adversary) to serve as the
victim users including three males and three females. These
victim users type on mobile phones and their keystrokes cover
all the keys on the boards. We also consider different settings
in the data collection, such as the ambient noise level, the
typing speed, the angle how the user holds the phone, etc.
We collect 4,680 keystrokes from victim users to evaluate the
performance, and their data is not used to train TapLeak (all
of them are used for the evaluation).

Metrics. We use the following metrics to show the perfor-
mance of TapLeak.

Top-k Accuracy. A list of key candidates can be provided by
TapLeak ordered by the distances to each cluster center (i.e.,
likelihood). Given the first k candidates, i.e., the candidates
with the first k highest likelihood, we check whether the typed
key (i.e., ground truth) is among them. Particularly, for n
keystrokes, we define its top-k accuracy as Ak = m

n , where
m is the number of inferences in which the top-k candidates
contain the ground truth.

Confusion matrix. In a confusion matrix, each row repre-
sents each key on the keyboard, and each column represents
each identified key by TapLeak. For example, for an entry
located at the ith row and jth column, the reported value
means that the percentage of the number of ith keys (i.e., the
typed keys) are identified as the jth key by TapLeak, out of
the total typed number for the ith key.
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Fig. 10: Confusion matrix of each key in TapLeak.

B. Overall Performance

As stated in Section II-B, in TapLeak, we view each row on
the keyboard as one group and there are thus three groups in
total. Fig. 9 shows the top-1 to top-3 accuracy of TapLeak for
each key in the three groups. The average top-1 accuracy cross
all three groups is 83.8%, and the top-2 and top-3 accuracy
further increases to 89.7% and 92.2%, respectively. These
results indicates the efficacy of the TapLeak design. Because
the area that the user’s finger touches the screen during typing
is small, the characteristics from the vibration of the tapping
spot likely dominates the feature of the generated sound. As
a result, TapLeak can achieve a good performance even if it
recognizes keystrokes in an unsupervised manner.

To understand how the recognition errors distribute, Fig. 10
further plots the confusion matrix. We observe that most of
the wrongly identified keys are recognized as the neighboring
keys in the same group. For example, a few keystrokes of
key “Q” are identified as key “W”, which is the neighbor
of “Q” in the same group. The short distance between two
adjacent keys could produce similar keystroke sounds with
more similar MFCC features, which we believe is the main
reason that causes the recognition error.

C. Impacts of System Components

Next, we investigate the impacts of the system component
design choices on the performance.
Performance gains. TapLeak contains two major components:
pre-grouping and auto-encoder based recognition. In Fig. 11,
we first investigate the performance gain that each of these
two components brings. In particular, we develop other two
versions of TapLeak: “No pre-grouping” means that we always
recognize all the keys at the same time, and “No auto-encoder”
means that we apply the clustering to the MFCC of the sound
clips directly. Fig. 11 shows that the top-1 to top-3 accuracy
of TapLeak without pre-grouping drops to 58.4%, 64.9% and
74.1%, respectively. The reason is that the neighboring keys
in different groups cannot be distinguished any more in the
first place. Moreover, the top-1 to top-3 accuracy of TapLeak
without auto-encoder (with pre-grouping) decreases to 48.7%,
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Fig. 11: Impacts of different system components.

56.1% and 63.5%, respectively. This significant reduction indi-
cates that the auto-encoder can extract representative features
effectively that are needed in the unsupervised clustering.
Different pre-grouping methods. In Section III-B, we ana-
lyze that using two identified starting points from two micro-
phones could cause larger errors compared with the cross-
correlation. Fig. 12(a) compares their performance of the
pre-grouping accuracy. We can see that the cross-correlation
improve the accuracy by 24.4% to 36.2%.
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Fig. 12: Keystroke recognition accuracy (a) with different
methods to calculate TDoA for pre-grouping, and (b) with
different auto-encoder designs.

Different auto-encoder designs. We next study the impact
of different auto-encoder designs. First, to fully modify the
entire spectrum image to generate representative features, we
propose to divide the spectrum image into several strips.
With respect to this design, we compare it with the direct
analysis using one 2D CNN applied to the entire spectrum
image (“Normal CNN”). Fig. 12(b) shows that the top-1,
top-2 and top-3 accuracy of the system with auto-encoder
using 2D CNN are 76.4%, 83.4% and 85.5%, respectively.
Our design outperforms it by nearly 10%. On the other
hand, we also propose two dedicated loss functions for the
keystroke recognition. If we disable these loss functions using
the recovery loss only (“Normal Loss”), Fig. 12(b) shows
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Fig. 13: Keystroke recognition accuracy (a) for different
users and (b) under different typing speeds.

that the top-1, top-2 and top-3 accuracy of the system will
be reduced to 64.8%, 73.0% and 74.8%, respectively. The
accuracy reduction reaches about 20%, which indicates that
our proposed loss functions can guide the auto-encoder to learn
a better representative feature for the clustering task.

D. Other Micro-Benchmarks

Different users. Fig. 13(a) plots the top-1 to top-3 accuracy of
TapLeak for the six different victim users in the experiments.
We find that is robust and performs well among all the users,
i.e., the average of top-1 accuracy is 82.1%, while top-2 and
top-3 accuracy increase to 89.2% and 94.7%, respectively.
Different typing speeds. We next examine the impact of
different typing speeds. To this end, we divide the typing
speeds into three levels: low speed: around 60 keystrokes per
minute (i.e., the typing speed of collecting data in previous
experiments), medium speed: around 90 keystrokes per minute,
and high speed: around 120 keystroke per minute. Because
the duration of each tapping sound lasts around 40 ms, the
interval between two consecutive typing (even with a relatively
high speed) is much lager than this duration. Therefore, we
can see from Fig. 13(b) that TapLeak can achieve comparable
performance under different typing speeds.
Different device angles. Users may hold the mobile devices
with different angles (between the device’s body and the hori-
zontal plane) during their typing. To investigate this impact, we
examine the system performance under four different angles,
including 0◦, 15◦, 30◦, and 45◦, respectively. For 0◦, we put
the phone on the desk, while for other degrees, the volunteer
holds the phone in one hand and uses the other hand to type
on the screen. Fig. 14(a) reports the performance. We find
that this factor does not impact the TapLeak’s performance
significantly, e.g., the top-1 accuracy varies from 79.6% to
83.8% in the experiment.
Different types of mobile phones. Next, we examine the
TapLeak’s performance on three mobile phones with different
screen sizes (e.g., a 5.1-inches Samsung Galaxy S7 with
Android 7.0, a 5.2-inches Nexus 5X with Android 6.0, and a
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Fig. 14: Keystroke recognition accuracy (a) with different
angles between the device screen and the horizontal plane,
and (b) with different type of mobile phones.

6.47-inches Huawei P30 Pro with Android 10.0). The sampling
rates of the microphones are still 192 KHz for all the three
mobile phones, and the number of groups in the pre-grouping
remains to be three. However, the representative hyperbolas
for the three groups are different on different phones due to
their different screen sizes and key sizes. In Fig. 14(b), we
plot the top-1 to top-3 accuracy of the keystroke recognition
on each mobile phone, where TapLeak can achieve a stable
performance cross all three types of the mobile phones.
Different background noise levels. To understand how the
background noise influences the performance of TapLeak,
we conduct the experiment in three real environments with
different background noise levels, e.g., a quiet library (35
dBSPL noise), a less noisy office (55 dBSPL noise) and a
noisy canteen (70 dBSPL noise). Fig. 15(a) shows the top-1
to top-3 accuracy in the above three environments. We find that
the performance of TapLeak decreases with the increase of the
background noise level. For example, the top-1 accuracy in the
quiet library is 90.2%, and reduces to 83.8% and 65.9% in the
office and in the canteen, respectively. We observe that some
unpredictable loud sounds in these environments, e.g., the
people’s talking and moving chairs nearby, can overwhelm the
recorded tapping sounds, which in turn degrade the keystroke
recognition performance.

E. Possible Defense Mechanism

Finally, we discuss the possible mechanism to defend this
attack. We notice that the operating system of a mobile device
can generate a sound through the speaker and/or trigger the
motor to vibrate for each keystroke. Both could produce extra
sounds. Such sounds will be mixed with the sound generated
by the user finger’s tapping, which may potentially disturb and
even impair the keystroke recognition.

We first examine the software generated sounds only.
Fig. 15(b) shows the performance of TapLeak under different
levels of the software generated sounds. From the result, we
find that such sounds do not impact the system performance.
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Fig. 15: Keystroke recognition accuracy (a) with different
background noise levels, (b) with different software gen-
erated key sound levels and (c) with different software
generated device vibration levels.

This is because although for each keystroke, we now record
two types of the sounds. The software generated sound always
suffers a short delay, e.g., about 100 ms, probably due to the
responding time of the operation system. This delay is larger
than the duration (e.g., 40 ms) of the sound generated by
the vibration caused by the finger’s tapping. It is unlikely for
the software generated sound to overlap with the consequent
keystroke sounds (if so, the user needs to type at least 10 keys
per second). As the software generated sound usually has a
much larger amplitude compared with the vibration generated
sounds, we can easily separate them to exclude its impact.
Thus, the software generated sound has a limited impact on
the proposed attack, which is not a suitable defence measure.

However, we find that the vibration of the device’s motor
triggered by the operating system could impact the perfor-
mance of TapLeak significantly. Fig. 15(c) shows that the top-
1 accuracy decreases to 54.2% at -80dBm power level of the
motor vibration, and rapidly drops to 16.6% and 3.2% when
the power increases to -77dBm and -60dBm, respectively. By
analyzing the recorded sounds, we observe that the delay of
the additional sound caused by the motor’s vibration is only 30
ms, which will be overlapped with the sound from the finger’s
tapping. Moreover, the frequency response of the motor’s vi-
bration also mixes with finger’s tapping sound in the frequency
domain. Hence, the performance of TapLeak degrades, while
this inspires us that enabling the motor vibration could be a
possible mechanism to defend this attack.

V. RELATED WORK

Inferring user’s keystrokes. In the literature, there are some
existing efforts made to infer the user’s keystrokes on a mobile
phone using various sensors on the same device. For instance,
TouchLogger [21] and TapLogger [7] utilize on-board motion
sensors to infer keystrokes on numeric keyboards. TapPrints
[22] expands the inference area to any location on the screen.

To further improve the performance, PIN Skimmer [23] uses
microphone to detect the keystroke events and camera to
estimate the slant of the phone caused by the tapping action.
Of course, we are not the first one to look at the keystroke
recognition problem through the user’s finger tapping sounds.
Narain et al. [13] utilize a set of on-board sensors, includ-
ing microphones, to realize a keystroke recognition design.
Shumailov et al. [24] utilize the TDoA measurements of the
acoustic signals between the two microphones to recognize the
keystrokes. Under a similar setting, TapSnoop [25] improves
the accuracy with adaptive preprocessing and more complex
classification model. Compared to our system, TapSnoop re-
quires enough data from the victim. We take one more step
to show the possibility to leak user’s typing privacy through
the tapping sounds only with a comprehensive unsupervised
design, so as to reveal (more importantly alarm people) the
further privacy leakage risk that may not be viable before.

Recently, researchers also investigate the possibilities to
infer user’s keystrokes on an external keyboard (e.g., keyboard
of a computer) by using one mobile phone (close to the
victim) to record the keystroke sounds directly [26], [27],
[28], [29], [30] or transmit inaudible sounds first and then
record the reflected sounds by user’s finger in the typing [31].
On the other hand, some researchers also study the keystroke
inference on mobile phones [32], [33] or laptops [34] through
some external devices, e.g., smart watch on the user’s wrist,
nearby camera [35], etc. However, these existing works do not
address the unique challenges solved in designing TapLeak.
Tracking and sensing designs using acoustic signals. Recent
studies propose to play acoustic signals to achieve an accurate
tracking of the user’s motion. LLAP [36] can achieve a high-
quality finger tracking on a 2-D plane. VSkin [11] combines
the structure-borne and air-borne sounds to sense the user’s
finger typing or movement at the back of a mobile phone.
Mao et al. [5] further utilize RNNs to achieve a room-scale
hand motion tracking. In addition to the tracking of the user’s
motion, some other works also study the tracking or ranging
for another mobile device [37], [38], [39], [40]. Different from
these works, TapLeak focuses on inferring a user’s keystrokes
when the user types on a mobile device.
Auto-encoder in deep learning. The auto-encoder framework
is widely used to explore a better representation of the input
data in the deep learning domain [9]. Existing works utilize
auto-encoder for dimensionality reduction [41], feature ex-
traction [42], recommendation system design [43], and image
compression [17]. Moreover, some works [20], [44] embed
the deep auto-encoder into a clustering procedure to learn
the best representation for the clustering task. To address
the unsupervised keystroke recognition issue, we propose a
tailored network and dedicated loss functions to integrate the
clustering ability with auto-encoder to address this issue.

VI. CONCLUSION

This paper presents TapLeak to demonstrate (more impor-
tantly alarm people) a crucial typing privacy leakage risk
through microphones on mobile phones only. We propose
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effective solutions to address weak signals and unsupervised
keystroke recognition two major design issues, and implement
our designs in a prototype system. Extensive experiments
indicate the efficacy of TapLeak by attacking more than 4000
keystrokes from different users on various mobile phones.
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