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Abstract—This paper studies an important yet overlooked
applicability issue in existing American sign language (ASL)
translation systems. With excessive sensing data collected for each
ASL word already, current designs treat every to-be-recognized
sentence as new and collect their sensing data from scratch, while
the amounts of sentences and the data samples per sentence are
large usually. It takes a long time to complete the data collection
for each single user, e.g., hours to a half day, which brings
non-trivial burden to the end users inevitably and prevents the
broader adoption of the ASL systems in practice. In this paper, we
figure out the reason causing this issue. We present GASLA atop
the wearable sensors to instrument our design. With GASLA,
the sentence-level sensing data can be generated from the word-
level data automatically, which can be then applied to train ASL
systems. Moreover, GASLA has a clear interface to be integrated
to existing ASL systems for overhead reduction directly. With this
ability, sign language translation could become highly lightweight
in both initial setup and future new-sentence addition. Compared
with around 10 per-sentence data samples in current systems,
GASLA requires 2–3 samples to achieve a similar performance.

I. INTRODUCTION

To improve the life convenience and achieve better conver-

sations for deaf people, a surge of American Sign Language

(ASL) translation systems have been proposed, e.g., using the

motion data from wearable devices [34], [12], the skeleton

data from cameras [10], the wireless signals from Wi-Fi or

RFID devices [17], etc. These systems can “understand” the

sign language performed by a deaf user and play its semantic

content through a speaker (or show it on the phone), so that

the deaf user can communicate with other people smoothly.

However, in this paper, we observe one important yet

overlooked applicability issue in existing ASL system designs.

To set up one such system, the sensing data samples are

collected for each basic “word” first to build a word library.

Next, for the more important ASL “sentences” that the deaf

user wants the system to recognize and translate, we find

current systems [10], [34], [12], [21] treat every sentence as

new and collect the sensing data for each sentence from scratch

to build the sentence library, given the fact that all the words

(that can compose these sentences) are collected in the word

library already. This causes the following applicability issues:

• Expensive setup overhead. To satisfy the daily communi-

cation’s needs, the numbers of both 1) the sentences to be

translated, e.g., tens to hundreds of sentences, and 2) the

amount of per-sentence sensing samples to collect, e.g., at

least 10 samples per sentence [10], [12], are large usually.

It takes hours or even a half day for the data collection.
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Fig. 1: Illustration of data collection for a wearable-based ASL

system. (a) “Nice” and (b) “Meet-you” are two ASL words to

be collected. (c) “Nice Meet-you” is an ASL sentence to be

collected, which is “nice to meet you” in English. Each sensing

data sample contains rising, semantic and falling three parts.

This incurs non-trivial setup overhead, which could make

novice or impatient users quit in the first place.

• High maintenance cost. Due to the same reason above,

whenever a user wants to upgrade her system to add more

new sentences, the same amount of effort needs to be paid

to collect the sensing data for each new sentence. This is

a life-long limitation in current designs, which calls for

the ability to setup and update the system efficiently.

• Unreliable system performance. Enforcing high setup and

maintenance overhead to the end users certainly lead to a

higher chance to lower the user’s patience during the data

collection. This could cause a continuous performance

drop when the low-quality sensing data are collected to

train the system by the novice or impatient users.

To overcome these issues, which we believe are one im-

portant reason preventing a wider adoption of ASL systems in

practice, we need to understand why the sentence-level sensing

data cannot be generated from the word-level ones in the prior

systems first. When the sensing data samples are collected for

each word, it is non-trivial to collect the data that correspond

to the semantic meaning of this word exactly, because the

sensing data for each word needs to be collected multiple times

(to train the system) and a frequent device on/off switching

is quite time consuming. Therefore, in current systems, a user

starts and ends each word with respect to some pre-defined

position usually, e.g., on thigh in Fig. 1(a-b), so that sensing

data can be collected continuously and later segmented easily.

Of course, the negative impact is that each segmented word-



level data sample contains not only the semantic part, which

includes one beginning part and one ending part as well, e.g.,
the rising and falling two parts in Fig. 1(a-b), respectively.

However, when these two words are performed consecutively

in one sentence, such extra parts from individual words do not

exist in the sentence’s semantic part, as Fig. 1(c) shows. This

is why the word-level data cannot be concatenated to construct

a sentence-level data sample directly.

With above understanding, in this paper, we aim to address

this issue based on the following observation. For any two

to-be-concatenated words, the falling part of the former word

(e.g., “nice”) and the rising part of the latter word (e.g., “meet-

you”) experience two approximately opposite moving traces.

If we align the ending spot of “nice” and the starting spot

of “meet-you”, and then rotate one of the moving trace in

the air to analyze the similarity of these two traces, we find

that the falling part of “nice” and the rising part of “meet-you”

share many similarities initially. After certain point, two traces

start to diverge dramatically — their individual semantic parts

start. Hence, we can view this point as a separation point,
based on which we can exclude the sensing data in the falling

and rising parts for the first and second words (Fig. 2(a-b)),

respectively. The semantic parts of these two words can be then

concatenated to form a two-word sentence (Fig. 2(c)), which

are similar to the corresponding data when the user performs

this sentence directly (Fig. 2(d)). This process can be repeated

to concatenate more words to form a longer sentence and we

can use it in the system training.

To harness this opportunity, we propose GASLA (Generative

ASL translAtor) and integrate it with the wearable sensors to

instrument our design. For any pair of words, their semantic

parts can start at different positions with respect to the user’s

body, leading to different separation points. We thus propose a

pipeline to achieve an effective signal processing and analyze

the similarity of their traces to identify the separation point

automatically. Moreover, we also make two practical considers

in GASLA, including 1) handling the stiff changes of the

sensing data at the separation point, which could lead to strong

yet undesired features to dominate and undermine the ASL

translation; and 2) abstracting a clear interface for GASLA to

be compatible to the modules in the existing ASL systems for

reducing their overhead.

We develop a prototype of GASLA with LG smart watch,

integrate our design to augment the state-of-the-art system

SignSpeaker [12], and experiment on six volunteers with

the ASL library of 41 sentences generated from 69 words.

Extensive results show that SignSpeaker needs at least 10

samples for each sentence in the system training to achieve

a high accuracy of 95%. Augmented by GASLA, with the

generated sentence-level trace as a good base, each user only

needs to include two to three native sentence-level samples

to achieve a comparable performance, e.g., 93%. In summary,

this paper has made the following contributions:

• We identify an applicability issue commonly in prior ASL

systems, which can cause the high setup and maintenance
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Fig. 2: Accelerometer data collected in wearable-based ASL

systems. For two ASL words (a) “nice” and (b) “meet-you”,

the crossed areas represent the to-be-excluded parts based on

the separation point. Afterwards, the sensing data for (c) the

generated sentence “nice meet-you” is similar to that of (d)

the sentence performed by the user directly.

costs, as well as continuous performance loss potentially

if errors are made in the labor-intensive data collection.

• We propose effective techniques to address this issue

and realize them in GASLA. Moreover, since GASLA is

positioned to enhance the applicability of ASL transla-

tion, instead of reinventing the entire system stack, we

thus provide a clear interface for our techniques to be

compatible to the existing ASL system.

• We develop a prototype of GASLA and conduct extensive

experiments. The results show that GASLA can achieve

comparable performance with the state-of-the-art design

but reduce the overhead remarkably.1

II. BACKGROUND AND OVERVIEW

In this section, we introduce the background of the sign

language translation and the overview of our GASLA design.

A. Sign Language Translation

1) Sign language users. There are a large population of deaf

people globally, e.g., approximately 48 millions in U.S. [12],

11 millions in U.K. [1], etc. Sign language is their major

language. It is composed of a set of pre-defined hand gestures

to represent the basic words, which can be further connected

to form different sentences. Two sign-language “speakers” can

communicate smoothly, while they usually have difficulties to

communicate with the people without the impaired hearing

or speech issues, which leads to tremendous inconvenience in

their daily life, e.g., shopping, commuting, seeing a doctor, etc.

More severely, many of them may not be able to obtain normal

educations and employments, which could cause them social

1The generated training data can train the ASL system directly. However,
according to our experiments in Section IV, we suggest the users to collect
two to three data samples from their direct performing of each sentence and
mix them with the generated ones in the training data set. By doing so, the
performance can be improved significantly. In the future, we plan to improve
our design to further avoid the collection of such two to three data samples.
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Fig. 3: Overview of the GASLA design.

isolation and loneliness [2]. As a result, the sign language

translation is essential and necessary for them.

2) Wearable-based solutions. To benefit the deaf people, a

variety of sign language translation systems have been pro-

posed (reviewed in Section V), while we find they share one

common issue to limit their applicability in practice. In this

paper, we adopt the wearable-based solutions to instrument

our design, due to their several advantages, including the wide

availability of wearable devices (e.g., smart watch, wrist band,

etc.), the portable design in nature (e.g., the user is not required

to stand in front of a camera with the computer vision designs),

and the lightweight computation (e.g., the motion data is used

usually and their computations can be afforded by the phone).

The principle of our solution is general, which can be turned

to fit other types of designs potentially in the future.

B. System Overview

Fig. 3 overviews our design. Because GASLA is positioned

to improve the applicability of current ASL systems instead of

reinventing the entire system stack, we design it with a clear

interface, so that the sentence-level data samples generated by

GASLA can be used to train the underlying ASL system.

With the word-level data samples collected (e.g., accelerom-

eter and gyroscope data), a user provides a list of sentences to

be recognized by the ASL system. Then, the sentence library
construction component in GASLA starts to generate the data

samples for these sentences using the word-level data samples

from the word library. The generation goes through three steps,

including the pre-processing, separation point localization and

concatenation. All the sentence-level data samples generated

by GASLA together are used to form the training data set.

To train one ASL system, the input training data samples

are usually converted to the frequency domain first and their

frequency spectrum is then applied to train the translator. Later,

when the system is used after the training, it takes the sensing

data from the sign language performed by the user as input (in

the actual system usage, the input is the actual sensing data, not

our generated ones) and recognizes its meaning, which can be

played through a speaker or shown on the phone’s screen, so

that deaf people can communicate with other people smoothly.

III. SYSTEM DESIGN

We elaborate the GASLA design in this section.

A. Word-Level Data Collection

To setup an ASL system, the first step is to collect sensing

data for a set of user-selected words to build a word-level

library. For each word, the user performs it several times to

collect multiple samples of the corresponding sensory data.2

Using a wearable device, the sensory data are from accelerom-
eters (acc) and gyroscopes (gyro) [12] usually. Therefore, each

sensory data sample for any word x can be expressed as:

sx = < accx, gyrox >, (1)

where accx and gyrox represent a sequence of the acc and

gyro values respectively, e.g., accx = {ax(t)} and gyrox =
{gx(t)}, where t is the time index. All si together form the

word-level library. Suppose that eight samples are collected

for each word. If we want to concatenate words “x” and

“y” to form a two-word sentence “xy”, we can generate 64

(= 8 × 8) different sensory data samples for this sentence,

by numerating different combinations of sx and sy samples.

For each combination, we concatenate the semantic parts of

“accx and accy” as well as “gyrox and gyroy”. The detailed

concatenation is introduced in the next subsection.

B. Sentence Library Construction

With the word-level library above, the user further decides

a list of sentences to be recognized by the ASL system.

With GASLA, we will generate the sensory data samples for

each sentence to construct the sentence-level library. We note

that if one sentence contains some word(s) not in the word-

level library yet, the user can collect the sensory data for

these missing words first, so that the sentences can be gen-

erated from the word-level library directly. As Fig. 3 depicts,

the sentence generation contains three steps, including Pre-
processing, Separation point localization and Concatenation.

We introduce each of them in the following.

1) Pre-processing: As stated in Section I, each word-level

sensory data sample contains rising, semantic and falling three

parts (Fig. 1). To concatenate two words x and y, we will

examine the similarity between the falling part of the former

word “x” and the rising part of the latter word “y”. Then we

can exclude these transitional sensory data and connect their

semantic parts to obtain one generated sensory data sample

for the sentence “xy”.

1.a) Problem. Ideally, if we had the wearable device’s exact

moving trajectories when the user is performing these two

words, we can compare these two trajectory traces to fulfill

above design idea. However, the wearable sensory data (e.g.,
acc and gyro) do not provide the device’s location information

directly. Some recent studies [15], [23], [24] are able to use the

motion sensor data from a single wearable device to recover

the moving trace of a user’s arm, but the overhead to integrate

them is large. More importantly, the accuracy of these existing

designs are moderate merely, e.g., about 10 cm tracking errors,

which are not precise enough for this concatenation design.

2In addition to generate sentences, these words can also be used to train
a dedicated neural network to recognize each single word performed by the
user [34], [10], which is orthogonal to GASLA and thus omitted in this paper.
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Fig. 4: Orientation orix traces of two ASL words (a) “Nice”

and (b) “Meet-you” respectively, which are derived from the

acceleration and the angular velocity of the wearable device.

1.b) Proposed strategy. To collect the sensory data for each

word, the user usually starts and ends each word with respect

to some pre-defined position usually, e.g., on thigh as shown in

Fig. 1. We find that the orientation of the device (on the wrist)

could serve as a good approximation to reflect how the user’s

arm is moving. Since this information is used to locate the

separation point merely (in step two), such an approximation

of the device’s actual moving trace suffices for GASLA.

Orientation [37] is derived from device’s acceleration (acc)

and the angular velocity [3]. It is measured by Euler angle θ
and can be obtained by using the wearable OS’s API directly.3

Therefore, for each sensory data sample sx in Eqn. (1), we can

further obtain its corresponding orientation trace:

orix = {θx(t)}Tt=1 = {< Rx(t), Yx(t), Px(t) >}Tt=1,

where T is the number of time steps and θx(t) is the Euler

angle at time t, which can be presented by roll (R), yaw (Y )

and pitch (P ) three directions. Fig. 4(a) and (b) depict orix
for the words “nice” and “meet-you”, respectively.

We note that the orientation orix is used to locate the

separation point merely, based on which we can remove the

sensory data (acc and gyro) for the falling part of word x and

the rising part of word y, respectively. The orientation itself is

not used by the ASL system. Before we conduct the separation

point search, we perform two pre-processings for orix first.

Signal cropping. Signal cropping removes the idle and

transitional portions in the sensory data sample of each word,

since we find that keeping them will decrease the efficiency of

the separation point search and the final sentence recognition

performance. We use orix to find the two cropping boundaries,

based on which we crop for both acc and gyro data.

For each axis of the Euler angle Ax(t), where A is R,

Y or P , the cropping boundaries are the first and last local

minimum points of Ax(t), e.g., Fig. 5 marks them for Px(t).
However, due to the inevitable noises and jitters, it is non-

trivial to select a proper window size to conduct the local

minimum search, e.g., at each time t, the average value in a

window before and after t is computed to determine whether

t is a local minimum point. Hence, we propose to conduct the

first derivative for each Ax(t) and all the local minimum points

3Euler angle indicates the attitude of the wearable device at each timestamp
in a reference coordinate system [3].
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Fig. 5: Illustration of signal cropping on the orientation traces

for (a) “Nice” and (b) “Meet-you” these two ASL words.

correspond to the zero-crossing points, meanwhile whose left

part is negative and right part is positive, in the first-derivative

trace (Fig. 6). We can then select the first and last such points

without using any pre-defined window for averaging, which is

more reliable. For each word, we conduct this operation for

roll, yaw and pitch three axes individually first. Then,

• for the rising part, if three axes lead to three different

cropping points, we select the one with the largest time

index, i.e., the most right-hand-side one in Fig. 5.

• for the falling part, we select the cropping point with the

minimum time index, i.e., the most left-hand-side one.

Re-sampling. Due to the unstable sampling rate of wearable

device [18], we further re-sample each sx (after above signal

cropping) and normalize their length in time to be the same.

2) Separation Point Search: For two to-be-connected words

“x” and “y”, the falling part of “x” and the rising part of “y”

experience two approximately opposite moving traces within

a certain range. We denote the farthest point of this range as

their separation point. Beyond this point, the semantic part

of each word will start gradually.

According to this rationale, the key idea of the separation

point search design is to align the ending spot on the falling

part of the former word “x” with the starting spot on the

rising part of word “y”. Then, we fix one trace (e.g., orix)

and gradually rotate another one (e.g., oriy) to examine the

similarity of their (highly) overlapped portion. After certain

point, when two traces start to diverge dramatically, we view

this point as the separation point. As a result, the separation

point search includes the following steps:

Sample
(a) (b) (c)

Fig. 6: First derivative of Ax(t), where A is for (a) R, (b) Y
and P . The cropping points are highlighted. They are zero-

crossing points. Meanwhile, their left and right parts are neg-

ative (corresponding to Euler angle’s decreasing) and positive

(corresponding to Euler angle’s increasing), respectively.
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Fig. 7: (a) Two orientation traces are aligned at spot 1©; and

(b) the separation point found for these two ASL words.

Step 1) Alignment: Because the orientation trace represents

how the device is rotated with respect to the previous time step,

two opposite orientation traces cannot be compared directly to

analyze their similarity, while we can reverse one of them (e.g.,
orix) along the time, denoted as ori′x, i.e.,

ori′x = {θx(T − t+ 1)}Tt=1 = {θ′x(t)}Tt=1, (2)

and use this reversed ori′x to get aligned and compared with

oriy . In Fig. 7, spot 1© is the starting spot of orimeet−you,

which has been aligned with the ending spot of ori′nice.

Step 2) Search: To find the the location of the separation

point, search is performed by in an iterative manner. Initially,

we compare two orientation traces within a conservatively

small window w (e.g., w=200), and then we gradually increase

the window size until the separation point is observed. In the

first (initial) iteration, each of two orientation traces includes

w Euler angles:

ori′x = {θ′x(t)}wt=1; and oriy = {θy(t)}wt=1. (3)

Then, we fix ori′x and rotate oriy (with respect to their

aligned spot) to search the best overlapping. This operation is

essentially to multiply a rotation matrix ry to oriy , so that the

distance d(·) between ori′x and the rotated ry ·oriy . In general,

for each iteration, the best overlapping can be quantified by

min{ry∈space} d(ori
′
x, ry · oriy), (4)

where the search space of ry and the distance measure d(·) in

Eqn. (4) are determined as follows.

Search space. The search space is a cone-like range, whose

central axis passes through the first and last Euler angle points

θ′x(1) and θ′x(w) from ori′x, as illustrated in Fig. 8. The

orientation trace oriy is rotated within this search space with a

small discrete step along Roll, Yaw and Pitch three directions.

For each rotation ry , we compute its distance d(·) to ori′x.

Distance. Considering that the time stamps are not precisely

synchronized between the two traces, we employ dynamic time

warping (DTW) [4] to tolerate such inconsistency by warping

oriy first and then compute its distance to ori′x:

d(·) =
1

w

w∑

t=1

|| θ′x(t)− ry ·DTW (θy(t)) ||2. (5)

Algorithm 1: Sentence-level Sensory Data Generation

1 input: accx, gyrox, orix, accy , gyroy , oriy;

2 output: accxy, gyroxy;

3 (orix, oriy) = pre− process(orix, oriy);
4 (ori′x, oriy) = align(orix, oriy);
5 initializing w; isFnd = false;

6 while w ≤ W and !isFnd do
7 r̃y = min{ry∈space} d(ori′x, ry · oriy);
8 D(t) = {Δ(t)}wt=1;

9 while t̃ ∈ [1, w] do
10 if 1

t̃

∑t̃
l=1 Δ(l) < α · 1

w−t̃+1

∑w
l=t̃ Δ(l) then

11 (accxy, gyroxy) =
concatenate(accx, gyrox, accy, gyroy);

12 isFnd = true; break;

13 else
14 increase t̃ by one;

15 increase w size;
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Fig. 8: Illustration of the cone-like search space.

Step 3) Checking: After the optimal rotation matrix r̃y is de-

termined from Eqn. (4), we need to check whether the separa-

tion point is included in the current window w. In the equation

of d(·) above, we denote Δ(t) = θ′x(t) − r̃y · DTW (θy(t)),
which is the distance between two corresponding points from

two orientation traces, and we store all Δ(t)s in a set:

D(t) = {Δ(t)}wt=1. (6)

If the separation point is in current window w and we denote

its time index is t̃, we find that before time t̃, the average of the

Δ(t) distances is generally small (highly overlapped), while it

climbs up quickly after t̃ (starting to diverge from each other).

Such an intuition can be realized by the following mechanism:

mint̃∈[1,w] t̃, (7)

s.t.
1

t̃

∑t̃

l=1
Δ(l) < α · 1

w − t̃+ 1

∑w

l=t̃
Δ(l), (8)

where α is an empirical parameter and it is set to 0.35 in our

current implementation. After solving Eqns. (7) and (8),

• if the optimal t̃ is found between 1 and w, it implies that

the separation point is in current window w and we can

move to the next concatenation module.
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Fig. 9: (a)-(c) Spectrum of 3-axis acc for the generated

sentence “nice meet-you” is similar to (d)-(f) that of 3-axis

acc for the sentence performed by the user directly.
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Fig. 10: (a)-(c) Spectrum of 3-axis gyro for the generated

sentence “nice meet-you” is similar to (d)-(f) that of 3-axis

gyro for the sentence performed by the user directly.

• if there is no t̃ to make constraint Eqn. (8) to hold, it

implies that the separation point is not in current window

w. In this case, we increase the window size and continue

the search for the next iteration. In current GASLA, the

window size is increased by 50 each time.

3) Concatenation: After the time index t̃ of the separation

point is found, we can process the sensory data acc =
{a(t)}Tt=1 and gyro = {g(t)}Tt=1 for words “x” and “y”:

• For word “x”: we remove all its acc and gyro data (in

the falling part) from time T − t̃ to T . In other words,

we keep {ax(l)}t̃l=1 for acc and {gx(l)}t̃l=1 for gyro.

• For word “y”: we remove the acc and gyro data from the

beginning to time t̃. In other words, we keep {ay(l)}Tl=t̃
for acc and {gy(l)}Tl=t̃

for gyro.

However, if we connect {ax(l)}t̃l=1 and {ay(l)}Tl=t̃
directly

to form the acc trace for “xy” (similar for gyro), it usually

leads to a sudden sensory value change at the concatenation

point, which will incur strong frequency responses to dominate

the frequency spectrum of the sensory data (the neural net-

works of ASL systems take such spectrum as input usually). To

tackle this issue, we apply a small transitional window between

{ax(l)}t̃l=1 and {ay(l)}Tl=t̃
(similar for gyro), and conduct

interpolations to add a set of interpolated sensory values for a

smooth transition in between without sudden changes.

4) Summary: So far, we have introduced the concatenation

for two words “x” and “y” to form a two-word sentence “xy”,

as summarized in Algorithm 1. If we need to connect “xy”

with another word “z”, we can repeat above process for “y”

and “z”, so that the sensory data sample for sentence “xyz”

can be generated. We can continue this process to form the

sensory data sample for the longer sentences.

On the other hand, for each sentence, by using different

sensor data samples from each word, we can generate different

samples for the same sentence. Finally, all the generated sensor

data samples for the user-selected sentences will form the

sentence-level library to train the ASL system.

C. ASL Translation

Now, with the sentence-level library, we can train an ASL

neural network to recognize different sentences.
1) Network input: For each sentence k, we have multiple

samples of the generated sensory data and each sample in-

cludes both the acc and gyro data, e.g., sk =< acck, gyrok >.
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Fig. 11: Structure of the neural network for ASL translation.

Because the features of the motion sensory data for different

words or sentences are mainly reflected at the frequency

domain, similar as the prior methods [12], we convert acck and

gyrok to the frequency domain and employ such frequency

spectrum to train the neural network.

Fig. 9 and 10 show the spectrum of the three-axis acck
and gyrok for sentence “nice meet-you”, respectively. In each

figure, the first row is the spectrum of our generated sensory

data. As a comparison, the second row shows the spectrum

of the sensory data when this sentence is performed by user

directly. We can see that our generated sensory data capture

the main frequency characteristics of the targeted sentence,

which can thus be used to train the neural network directly.

2) Neural network: As stated in Section I, GASLA aims

to the generate the sentence-level sensory data from the word-

level ones, instead of re-inventing the entire ASL system stack.

Therefore, with the training data obtained from GASLA, we

apply it for the neural network from the state-of-the-art ASL

system, SignSpeaker [12], directly, which can enable GASLA
to be an independent component to be integrated to existing

ASL systems. Fig. 11 illustrates the network structure, which

includes three major parts:

• Input: the network takes six spectrums as input from both

the acc and gyro sensory data.4 Each spectrum is a 198

by 1245 2D image in our implementation.

• Bi-LSTM layers: since sensory data have strong tempo-

rary correlations within each sentence, Bi-LSTM layers

are used in the network design to capture such relation.

4SignSpeaker also takes the spectrum of linear acceleration as input, which
are derived from the acc data. We thus omit it in our current implementation.



• Connectionist Temporal Classification (CTC): CTC layer

is employed to associate each word’s label in a sentence

to the corresponding part in the spectrum automatically.

IV. SYSTEM EVALUATION

In this section, we evaluate the performance of GASLA.

A. Experiment Setup

Hardware and software. We develop a prototype system

of GASLA with the LG Watch (Android 7.1 Wear OS with

Invensense MPU-6515 six-axis motion sensors), SAMSUNG

Galaxy S7, and a desktop of Intel i7-8700K CPU and Nvidia

GTX 2080Ti GPU to train the neural network of the ASL

translation system. The neural network is developed on Tensor-

Flow (1.15.0). After the development and training, we deploy

the executable network on the smartphone.

Data collection. Since there is no public motion sensor data

set from smart watch for sign language [12], we conduct a

data collection according to the well-known American Sign

Language guidance website [5]. We select 69 popular words in

our daily lives to construct the word-level library. These word-

level sensory data are further used to generate the sensory data

for 41 commonly used sentences, e.g., “Food enough”, “I like

hamburger”, “Your favorite book what”, used for evaluation.

We recruit six volunteer users (3 females and 3 males)

to participate into the data collection and each user wears

the smart watch on the right wrist. This study has obtained

the university’s ethical approval. Before the data collection

starts, we provide a 10-minute tutorial for each user about

the usage of device, the procedure of data collection, etc.

We start from the word-level data collection. For each word,

the video illustration from [5] is played. The user sits on

a chair and rehearses until getting ready. During the actual

collection, every word is performed five times continuously

(without pausing the collection in the middle). As shown in

Fig. 1, the default hand position before and after performing a

word each time is on the user’s thigh. After all the words are

completed, we move on to the sentence-level data collection

with a similar procedure. In total, we have collected 2460 (=

6× 41× 10) pieces of sentence-level data, which are used to

train the ASL system without GASLA for comparison purpose,

and 2070 (= 6× 69× 5) pieces of word-level data, which are

used to generate 3936 (= 6 × 41 × 16) pieces of sentence-

level data for training the ASL system with GASLA. With

the training data set, we train only one neural network for

each method (stated below) and test the performance of each

method on all six users. For each method, we use 80% of

sentence-level data to form the training data set.

Metric. We adopt the same metric — word error rate (re)

— as [12], which is widely used to evaluate ASL systems and

defined as re =
D+I+S
D+C+S , where I is the minimum number of

word insertions, D is the minimum number of word deletions,

S is the minimum number of substitutions and C is the number

of correctly recognized signs, between the recognized sentence

by the network and the ground truth. With re, we adopt the

accuracy, i.e., (1− re)× 100%, in our evaluation.
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Fig. 12: Accuracy comparisons between SignSpeaker (SP) and

GASLA (GA) under different settings by adding one to three

piece(s) of native sensory data in the training.

Methods. We compare following methods in the evaluation:

• SignSpeaker (SP): the state-of-the-art wearable-based

ASL system [12], which is trained with eight sensory data

samples for each sentence when the sentence is performed

by users directly (without our generated sensory data).

• GASLA (GA): our design atop SignSpeaker, in which the

network is trained by using our generated sensory data.

B. Overall Performance

To facilitate our discussion, we denote:

• Native sensory data: as the sensory data collected when

a sentence is performed by user directly;

• Generated sensor data: as the sensory data generated

by using the word-level ones by our method.

Overall performance. For a clear illustration, we group 41

sentences into eight groups with each group of around five

sentences in Fig. 12. The accuracy of SP among eight groups

is from 92% to 97.67%, and the overall average accuracy is

95%, which is similar to the accuracy reported in the original

paper of SignSpeaker [12]. For GA, we only use the generated

sensory data to train the network and test it on native sensory

data directly. We can see that it achieves a reasonable accuracy

from 62.8% to 75.8% among these groups. In the experiment,

we observe that as long as we add very few native sensory

data in the training, the system performance can be improved

dramatically. In particular, when only one native sample is

added, GA (denoted as GA-1) can achieve the accuracy from

76% to 85.6%. With the number of native samples is increased

to three, GA-3 can achieve comparable performance with SP,

e.g., 93% on average. In the rest experiments, we adopt GA-3

as the default setting.

Fig. 12 suggests that GA already provides a good baseline.

The major reason limiting its performance is the dis-similarity

occurred in the sensory data generation process, which leads

to certain differences on the obtained spectrum inputs. For-

tunately, with the performance obtained in Fig. 12, we can

foresee a good potential to employ more advanced domain

transfer learning techniques to remove such differences for

improving the accuracy, and we will try this opportunity in

the future. Even with the current design, the data collection

overhead can be reduced by 62.5% compared with that in SP.

SignSpeaker with fewer training data. In Fig. 13, we

further investigate the performance of SignSpeaker if it also

uses very few (two to three) sensory data samples directly



Fig. 13: Accuracy of GASLA and SignSpeaker when few native

sensory data are used in the system training.

from the user. From the result, we can see that the performance

drop of SignSpeaker is obvious compared with Fig. 12, e.g.,
the accuracy reduction is 10.2% to 27.8%, which indicates

that the importance of the amount of the sensory data samples

used to train an ASL system. Different from SignSpeaker, with

the generated sensory data as the major training data (they

are generated from the word-level sensory data automatically

and the word-level library is available in most ASL systems),

GASLA can achieve a much higher accuracy with the same

overhead of the native sentence-level sensory data collection.

C. Quality of Generated Sensory Data

To ensure the good performance of GASLA, one impor-

tant requirement is that the generated sensory data for each

sentence must be similar enough to the corresponding native

data. In this experiment, we study the similarity between these

two types of sensory data. To quantify the similarity, because

the spectrum inputs of the neural network are 2D images, we

utilize the structural similarity (SSIM) index, which is a mature

indicator to measure the similarity between two images [16].

Fig. 14: CDF of the SSIM differences.

For each sentence, we first pick one native data sample

as a base and calculate: 1) the average SSIM of all other

native samples of this sentence with respect to the base, and

2) the average of SSIM of all the generated samples of this

sentence with respect to the same base. Then, we compute

the difference of these two average SSIM values. A smaller

difference indicates the higher similarity between them. For

each word, we repeat this process by using every native sample

as the base. Fig. 14 shows the CDF of all the sentences among

the eight groups. From the result, we can see that 80% of

the SSIM differences are from 0.02 to 0.028, which are very

small. Overall, 80% of this difference is less than 0.025 and

the average is 0.018, which indicate that the generated sensory

data samples are indeed similar to the native samples.

Fig. 15: Accuracy among six different users.

D. Micro-Benchmarks

We further examine a series of micro-benchmarks for a more

comprehensive understanding of GASLA’s performance.

Different users. Fig. 15 illustrates the performance of

GASLA among different users. The accuracy among different

users is from 88% to 97%, and the average accuracy is 92.83%.

These results indicate GASLA can achieve a consistently good

performance cross all the users.

Different wrist movement speeds. Next, we examine the

system performance under different wrist movement speeds in

Fig. 16(a). In particular, the normal speed is about 1.5 seconds

to perform one word, and we investigate the faster and slower

speeds with about 1.0 and 1.9 seconds to perform a word,

respectively. The network keeps unchanged (trained by the

normal-speed data only as before) and we test it using the

input data under different speeds. Fig. 16(a) shows that the

accuracy under faster and slower wrist movement speeds is

87% and 93%, respectively. Since we have normalized the

length of the input sensory data prior to processing, the speed

difference is compensated and its impact is not significant.

Fig. 16: Accuracy under different (a) wrist movement speeds

and (b) wearing tightness levels. (c) Accuracy with and

without noises in the sentence-level sensory data.

Different wearing tightness levels. We then investigate

the impact of the wearing tightness of the smart watch in

Fig. 16(b). In particular, the user wears the smart watch loosely

or tightly intentionally. The network is still unchanged (trained

by the normal-tightness data). We can see that the accuracy is

stable under different wearing tightness levels, which indicates

that the system is robust to user’s different wearing styles.

Different quality of data. Without the GASLA design,

the data collection overhead is high to setup an ASL system

and it is possible to collect low-quality sensory data. If such

low-quality sensory data are adopted in the system training,

the system performance can be impacted. To understand this

impact, we intentionally mix some noisy motion sensory data
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system is executed on smart phone.

into the training data set. As Fig. 16(d) shows, the average ac-

curacy with and without noises is 42% and 92%, respectively.

Therefore, a lightweight design is desired in practice.

E. System Overhead

Latency and energy consumption. Finally, we examine the

latency and energy consumption of GASLA. For the sentence-

level sensory data generation, we have measured the latency

for each technical module on the desktop. The result shows

that the latency of pre-processing, search and concatenation

is 1.05, 9.32 and 0.002 sec, respectively. The total latency is

10.372 sec, which is acceptable in practice. After the system

is deployed on the smart phone, our measurement shows that

the average time to translate one ASL sentence is 0.4 sec

and the memory usage on the phone is 256 MB, which can

be accommodated easily by existing mobile platforms. We

measure the system’s energy consumption on the phone by

Monsoon power monitor in Fig. 17. In particular, the working

current (mA) in the idle state and screen-on state is about

120 mA and 150 mA respectively. Fig. 17 shows that the

average working current of the system is 700 mA. Such energy

consumption can lead to nearly 4.29-hour battery life with

a continuous execution on SAMSUNG Galaxy S7, which is

acceptable for the practical usage of the ASL system.

V. RELATED WORK

We review the related works of GASLA in this section.

ASL translation systems. To facilitate the communication

for the deaf people, many different types of the ASL systems

have been developed. The popular examples employ cameras

or depth sensors with computer vision techniques, wireless,

bio-metric sensors and wearable sensors to fulfill the design.

DeepASL [10] is an ASL system by using Leap Motion.

The system in [19] is based on the on-board depth camera

from a smartphone. The system proposed in [7] takes the video

frames captured by an RGB camera as input. However, depth

sensors or cameras usually have a fixed deployment, which

limit the service area of the ASL system. In addition, they

also require the line of sight between the use and device, as

well as a good lighting condition. By using wireless signals,

like SignFi [17] and mmASL [21], such requirements can be

avoided, while their usage is still limited in a vicinity of the

wireless device. To overcome these limitations, the bio-metric

sensors and wearable sensors can provide portable and more

ubiquitous solutions. For example, the system in [35] utilizes

Photoplethysmography (PPG) sensors for the ASL translation.

Some recent works further adopt the more commonly wearable

sensors from different kinds of wearable devices in their

system designs, e.g., by using smart gloves [26], armband [34]

and smart watch [12]. Parallel to the studies above, we observe

a common applicability issue in existing ASL systems in this

paper. We propose GASLA to address this issue to enhance the

applicability and usability of ASL translation systems.

Motion sensor data processing. The GASLA design is also

related to the motion sensor data processing, especially for

accelerometers and gyroscopes. In addition to ASL, motion

sensors are also used for other applications in the literature. For

instance, various features are extracted from motion sensors

for human activity recognition [32], [8], [29], [33], [11],

user authentication [25], [6], [9], [36], security analysis to

unveil the potential privacy leakage when users type sensitive

information [14], [38], [28], [27], etc. Some recent works [15],

[24], [23] are able to recover the moving trajectory of the

user’s arm using the motion sensor data from a single smart

watch. GASLA is orthogonal to these existing works, which

do not address the challenges encountered in this paper.

Data augmentation. Data augmentation [30] is a related

technique to construct signals in GASLA, which mainly in-

cludes GAN (Generative Adversarial Network)-based meth-

ods [20], [13] and data processing methods [31], [22]. GAN-

based methods usually train a generator to generate signals

similar to the real signals [20], [13], while they require

many real sensing signals to ensure the network’s reliability

and generalization. Data processing methods usually generate

variants of the real signals through several transformations

after the time and frequency domain analysis on the signals,

such as cropping, warping, jittering, shifting, flipping and so

on [31], [22]. However, they may not be effective to solve the

applicability issue of the existing ASL systems. In this paper,

we propose GASLA to address this issue.

VI. CONCLUSION

This paper presents GASLA to address a meaningful ap-

plicability issue for existing ASL systems. With GASLA, the

sensory data of each to-be-recognized ASL sentence can be

generated by using the word-level ones automatically. The

generated sentence-level sensory data can be applied in the

system training directly, which largely reduces the setup and

maintenance overhead of ASL systems, because the amounts

of the sentences and the data samples per sentence are large

usually. We present GASLA atop the wearable sensors to

instrument our design. To examine the effectiveness of this

system design, we develop a GASLA prototype and conduct

extensive experiments to evaluate its performance.
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