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ABSTRACT
This paper introduces ASGaze, a new gaze tracking system designed
using the common RGB camera from mobile phones. In addition to
improving the accuracy of existing RGB camera-based gaze tracking
methods, a novelty of ASGaze is that it can be configured to track
gaze points on various surface areas commonly required in different
applications, such as mobile phone screens, computer displays or
even non-electronic surfaces like whiteboards or paper - a situation
that is difficult for existing RGB camera-based methods to handle.
To achieve the design of ASGaze, we revisit the 3D geometric model
of the eye, which is widely adopted by high-end and commercial
gaze trackers, and it has the potential to achieve our design goals.
To avoid the high cost of commercial solutions, we identify three
key issues to be addressed when processing the eye model with
an RGB camera, including how to first accurately extract eye iris
boundary that is the meta-information in our gaze tracking design,
and then how to remove gaze ambiguity from iris boundary to
gaze point transformation, and finally how to precisely map gaze
points to the target tracking surface. In this paper, we propose a
series of effective techniques to address these issues. We develop
a prototype system and conduct extensive experiments on three
different typical tracking surfaces to show promising performance
gains compared to the recent solution.

CCS CONCEPTS
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1 INTRODUCTION
Gaze tracking is a technique [18] that uses camera(s) as a sensor
to infer where a user is looking, known as the gaze point, by cap-
turing video frames or images of the user’s eyes. Gaze tracking
can enable a wide range of useful applications, such as gaze-based
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Figure 1: (a) Illustration of the 3D geometry of the eye, and
(b) the iris boundary, which looks like an ellipse when the
eye looks in different directions.

input designs that can facilitate disabled people [51] or protect user
typing privacy on mobile devices [32], rehabilitation aids for neu-
rologically impaired or dyslexic patients [22], and analysis for the
content of interest to different users [28, 42]. In addition to accu-
racy, gaze tracking may be required on various surfaces in different
applications, such as mobile phone screens, computer displays, or
even non-electronic screens like whiteboards or paper. For exam-
ple [23, 38], zigzag lines or scrambled numbers are often printed
on paper in rehabilitation for the eyes of dyslexic patients to fol-
low. However, without gaze tracking capabilities on non-electronic
surfaces, doctors cannot assess the effectiveness of rehabilitation.

The classic principle of gaze tracking relies on a 3D geometric
model of the eye [52], which can fulfill above design requirements.
As shown in Figure 1(a), the optical axis of the eye is a line perpen-
dicular to the iris plane that intersects the iris center and eyeball
center. Once the optical axis is known, the actual visual axis is offset
by a small kappa angle due to the structure of eye [7]. When we ex-
tend the visual axis, the intersection with the tracking surface gives
a gaze point. However, the main challenge in gaze tracking design is
that the direction of the optical/visual axis is highly subtle informa-
tion, but the pose of the user head and the distance of the eyes to the
camera can change during tracking. If the above geometric relation
cannot be obtained with high accuracy, the tracking performance
will drop significantly. Thus, commercial solutions like Tobii [5]
utilize dedicated hardware (such as infrared light sources and re-
ceivers) to reliably reconstruct eye geometry. They can analyze
and decode the specialized reflection patterns of infrared light on
the cornea and pupil to achieve accurate gazing tracking. However,
these commercial products are generally expensive.

To develop a low-cost solution, many recent designs [9, 13, 17,
21, 27, 39, 40, 62] have taken common RGB cameras from mobile
devices or webcams and proposed an alternative, called appearance-
based solutions, to bypass obtaining eye geometry. The main idea is
to label a large dataset with the ground truth of the gaze points for
the eye images captured in as many situations as possible, including
different head poses, eye-to-device distances, etc., and then leverage
neural networks to mine sophisticated relationships from input eye
images to output gaze points under these factors. Although this
is an end-to-end approach without requiring specialized sensors
and hardware, the overall search space for these uncertainties is

https://doi.org/10.1145/3560905.3568544
https://doi.org/10.1145/3560905.3568544


numerous. Thus, this requires a large dataset to cover the diversity
brought by these factors, resulting in significant data collection
overhead. Furthermore, existing appearance-based methods that
estimate gaze points on tracking surfaces mainly work on electronic
screens, as they need to display the ground truth of gaze points to
collect training data.

To overcome these shortcomings, we revisit the geometric model
of the eye used by commercial solutions and identify opportunities
to enable a geometry-based tracking design by using common RGB
cameras without any specialized sensor or hardware. It is feasible
because the optical axis is perpendicular to the iris plane, and this
direction can also be inferred from the shape of the iris boundary.
As shown in Figure 1(b), the iris boundary is a circle, but it looks like
an ellipse when the eye looks in different directions. In fact, existing
works have derived themathematical relationship between the ellip-
tical parameters of an iris boundary and the direction of the optical
axis, but it has not been widely used in gaze tracking design due to
the difficulty to reliably extract the iris boundary before. However,
recent breakthroughs in computer vision have shown that accurate
iris boundaries can be extracted from RGB cameras through novel
neural network designs and image-processing techniques [33, 54].
Therefore, we aim to leverage such recent breakthroughs to develop
a ubiquitous gaze tracker on RGB cameras. However, existing iris
tracking technologies cannot be directly applied to our system due
to the following challenges:

1) Iris boundary is thin and occupies very few pixels on each eye
frame [33]. Due to the influences of eyelids and eyelashes, existing
iris tracking designs tend to miss some key boundary pixels or add
non-boundary pixels by mistake. These errors may not be noticed
from metrics evaluating the quality of extracted iris boundaries,
but they can seriously affect the subsequent gaze tracking.

2) Even if high-quality iris boundaries can be obtained, each
elliptical iris boundary is a 2D shape that needs to be mapped into
3D space for determining gaze direction. However, each 2D elliptical
shape has two degrees of freedom to be embedded in 3D space, only
one of which results in the correct gaze direction. Therefore, we
need to exclude such ambiguity effectively.

3)We use the phone to capture the user’s eye frames, but our gaze
tracking is not limited to the phone screen. As stated before, gaze
tracking may be required on other external areas, such as a com-
puter screen nearby and even a whiteboard or paper (not an elec-
tronic screen — a situation that is difficult for existing appearance-
based designs to handle). Therefore, we need to accurately map the
gaze points tracked by the phone to the tracking surface.

We address above challenges by designing ASGaze. In this sys-
tem, we introduce a novel processing pipeline that can be inte-
grated into recent iris tracking method [33] to improve the quality
of the extracted iris boundaries. It exploits the geometric features
of boundary pixels and the temporal relationship between neigh-
boring eye frames to select high-quality iris boundary pixels. To
further remove the gaze direction ambiguity, we leverage a mathe-
matical property [19] that when a circle is in translational motion,
its normal vector direction keeps unchanged relative to a fixed
point. Since the displacement of iris plane over two frames can be
approximated as translational motion (§4), we can choose the opti-
cal axis that accumulates the least change as the result. Finally, we
do not need to collect ground truth of gaze points to train ASGaze.

We only need to label iris boundaries for a subset of eye frames for
iris boundary detection, based on which gaze points can be derived
directly. Hence, ASGaze can work on an external surface area after
gaze points tracked by phone are mapped to this area. To this end,
the user only needs to look at the four corners of the area during
the setup phase when the phone screen is nearly parallel to the
tracking area. ASGaze can determine the minimum number of eye
frames to use when the user looks at each corner, reducing setup
latency and ensuring the quality of gaze point mapping.

We implement a prototype system of ASGaze by using an iPhone
11 Pro and evaluate gaze tracking performance on three typical
surfaces of a computer screen, a whiteboard, and a phone screen.
We compare ASGaze with the recent appearance-based method
EVE [40] on eight recruited volunteers and a public dataset released
by the EVE’s team. Overall, the tracking error of EVE is about 3.75–
4.26 cm for these volunteers and 3.20 cm for the public dataset.
ASGaze can reduce the error to only 1.69–2.40 cm. We also examine
ASGaze under different settings, including different head poses,
eye-to-camera distances, lighting conditions, etc., and find that
ASGaze can achieve good tracking performance reliably under
various settings. The project site is at https://asgaze.github.io. In
summary, this paper makes the following contributions:

• To the best of our knowledge, ASGaze is the first gaze track-
ing design based on geometric eye model and common RGB
camera, whose tracking can be extended to various external
tracking surfaces, not limited to phone screens.

• We propose efficient and practical techniques to address
three unique challenges in ASGaze, including errors of iris
boundary pixels, ambiguity of the gaze direction, and map-
ping of gaze points to the tracking surface area.

• We develop an ASGaze prototype and conduct extensive
evaluations on different tracking surfaces. The results show
promising performance gains compared to the recent method
on different datasets.

2 PRELIMINARY AND BACKGROUND
2.1 Application Scenarios

NovelHCI systems.Gaze tracking can be used for novel and useful
human-computer interaction (HCI) designs [49, 58]. For example,
it allows people with disabilities to use the gaze as a mouse to
interact with and control a computer [51]. In addition, gaze tracking
can also enable eye-based input design [20, 63]. It can protect the
user’s typing privacy (such as passwords and sensitive personal
information) on mobile devices, where the finger does not need to
physically touch each button, and this can prevent nearby people
from snooping on the information the user typed [32].

Smart health. For patients of vision impairment or dyslexic, they
need long-term rehabilitation for their eye movement abilities [22,
46]. In rehabilitation materials, zigzag lines or scrambled numbers
are printed on each page of the rehabilitationmaterials [23]. Patients
need to force their eyes to follow the zigzag line to move or search
numbers in increasing order to practice [38]. However, there are
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Figure 2: Illustration of the gaze tracking setup.

currently no gaze trackers working on non-electronic areas, and
doctors cannot fully understand the effectiveness of rehabilitation.

Analysis for content of interest.When a user is browsing the
web or using an APP, if the user enables the gaze tracking function,
the gaze points can tell valuable meta information, such as what
the users are interested in and how long the user’s eyes stay in each
content [42]. These statistics are useful to provide personalized
recommendations or layouts for users, and are also valuable for
developers to optimize advertisement placement on web pages, APP
layout design, article topic selection, and so on.

2.2 System Setting and Architecture
Setup.Mobile phone is placed next to the tracking surface, such as
under a computer screen or under a whiteboard. ASGaze will work
as long as the phone screen is nearly parallel to the tracking area
(§5). During the setup process, there are two important steps:

• Step-1: a user looks freely at any positions in the tracking
area, and the phone records video frames of the eyes. One ad-
vantage of iris geometry based tracking designs is that we do
not need to collect ground truth of gaze points. We only need
to label the iris boundaries for a subset of eye frames, which
are used to train a neural network to extract iris boundaries,
from which gaze points can be directly derived.

• Step-2: the user stares at the four corners of the tracking
area in turn, which will be used to map gaze points from the
camera coordinate system to the tracking area. As shown
in Figure 2, after ASGaze determines the location of the iris
center and the direction that the user looks at, the intersec-
tion of this gaze direction and the screen gives a gaze point.
ASGaze can get the gaze points for each eye, and we use
their average as the result in ASGaze.
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Figure 3: Architecture of the ASGaze design.

Architecture. Figure 3 illustrates the architecture of ASGaze with
three major modules. Iris boundary detector contains our proposed
processing pipeline integrated into a state-of-the-art iris tracking
method. The detector is trained by using the labeled iris boundaries.
After training, it reads video frames of the user’s eyes as input
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Figure 4: Illustration of iris boundary detection.

and outputs high-quality iris boundaries extracted from each eye
frame. The extracted iris boundaries are then passed to the gaze
ray estimator to output gaze points. During the setup stage, the
ambiguity removal component in gaze ray estimator learns a rule
on how to determine the correct gaze direction based on the video
frames collected from users, and the estimator can instantiate all the
parameters to convert iris boundaries to gaze points. On the other
hand, during system setup of the mapping module, when the user
looks at each corner of the tracking area, this module can tell when
the collection of video frames can be stopped. After the collection
for all the corners is completed, it derives the relationship that maps
gaze points in the camera coordinate system to the tracking area,
which is a necessary step to ensure gaze tracking on any surface.
In the following, we elaborate the design of each module.

3 IRIS BOUNDARY DETECTOR
In this section, we introduce the design of iris boundary detector in
Figure 3, which reads video frames of the user’s eyes as input and
outputs high-quality iris boundaries extracted from each frame.

3.1 Design Principle
The iris boundary is a thin ellipse. Missing some key boundary
pixels or adding a few erroneous non-boundary pixels can distort
the estimation of the ellipse parameters, which will in turn lead to
large gaze tracking errors. Recent research uses neural networks to
advance iris tracking, and a recent work, denoted as IrisTrack [33],
achieves the state-of-the-art performance of iris boundary detection,
but it cannot be applied to ASGaze directly. In the following, we
first introduce the design rationale of IrisTrack and elaborate why
it cannot be directly used. Then we introduce effective designs on
top of IrisTrack to obtain accurate iris boundaries in §3.2.

Rationale of IrisTrack. The previous iris detection methods [54]
mainly divide pixels from each eye frame into two classes: iris
boundary pixels and other pixels, and adopt a neural network to
recognize iris boundary pixels in an end-to-end manner. Because
iris boundary is thin, it is difficult for a network to learn sufficient
features from the boundary, which limits the accuracy of the detec-
tion result. To overcome this problem, IrisTrack [33] proposes to
convert the task of iris boundary detection to a segmentation task,
which divides all the pixels of each frame into three classes and
classifies each pixel to class 𝑘 , where 𝑘 ∈ {𝑖𝑟𝑖𝑠, 𝑠𝑐𝑙𝑒𝑟𝑎, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑}
as shown in Figure 4. IrisTrack finds that the iris boundary can be
sketched using a thin stripe of the pixels that have high classifica-
tion uncertainties belonging to the classes of iris and sclera1, which
can achieve the state-of-the-art iris detection performance.
1The network classifies every pixel among three classes {𝑖𝑟𝑖𝑠, 𝑠𝑐𝑙𝑒𝑟𝑎,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 }.
For each pixel, the network outputs the probability that it belongs to each of these
three classes. A lower probability means a higher uncertainty to fall into this class.
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(a) IrisTrack and (b) our proposed design.

To enable this design, IrisTrack employs a U-Net backbone [43] as
the segmentation network, which takes 𝑇 continuous video frames
of user’s eyes as input. For each frame 𝑥 has 𝐼 pixels, denoted
as 𝑥 =< 𝑥 (0), 𝑥 (1), . . . , 𝑥 (𝐼 − 1) >. The neural network outputs
a probability map 𝑝 for frame 𝑥 , which can be written as 𝑝 =<

𝑝𝑘 (0), 𝑝𝑘 (1), . . . , 𝑝𝑘 (𝐼 −1) >, where 𝑝𝑘 (𝑖) is the probability of pixel
𝑥 (𝑖) belonging to class 𝑘 . IrisTrack utilizes cross-entropy to select
the boundary pixels — Because iris boundary is at the intersection
between iris and sclera, the boundary pixels should have higher
uncertainty belonging to these two classes than other pixels, which
leads to high cross-entropy values as follows:

−
∑︁

𝑘
𝑝𝑘 (𝑖) × log(𝑝𝑘 (𝑖)) . (1)

To illustrate this design, Figure 5(a) shows an example. The first
result shows the entropy values from an eye frame, in which the
darker the color, the higher the uncertainty value. From the result,
we can see that the entropy values already sketch the iris bound-
ary (between iris and scelera) and the eyelid boundary (between
background and iris/scelera). Then, the entropy values of the eyelid
boundary can be set to zero to preserve the iris boundary only for
the following operations, as shown by “Step 1” in Figure 5(a). To
further improve the obtained boundary, IrisTrack proposes two
mechanisms to remove noisy pixels (“Step 1” and “Step 2” in Fig-
ure 5(a)). The remaining pixels (in “Step 3”) are used to fit an ellipse
as the iris boundary, as depicted on the eye frame in Figure 5(a).

Observations. Although IrisTrack achieves the state-of-the-art iris
detection result [33], our evaluation in §6 reveals that it may not
lead to an accurate gaze tracking directly, where the tracking error
of using IrisTrack can be greater than 3 cm. Through our study, we
observe the following two limitations:

• Even though IrisTrack obtains sharp boundaries already,
they are still not thin enough to infer gaze information and
the boundary thickness should be further reduced because
the thickness is the uncertain range when we fit an ellipse.
The major reason that limits the boundary thickness is the
loss function used to guard the feature extraction from each
class, where only a cross-entropy loss is used by IrisTrack.
However, this loss cannot reliably extract features for the
pixels close to the iris boundary.

• IrisTrack utilizes the canny-edge detection method [10] to
refine the obtained iris boundary pixels, which needs to
calculate the gradient of each pixel in the frame and then
remove all the pixels whose gradients are greater than an

empirical threshold. However, it is common for the threshold
becoming sub-optimal for an input eye frame. In this case,
noisy pixels are not effectively removed, as shown in “Step
3” of Figure 5(a), which can distort the shape of the fitted
ellipse and affect the subsequent gaze tracking performance.

Our solution. Since the methodology of IrisTrack to obtain iris
boundary is effective, we still follow its two steps in ASGaze: 1)
identify candidate pixels and 2) use entropy to sketch iris boundary.
However, for the first step, we propose to design a new and novel
mechanism to purify the candidate boundary pixels (§3.2). To this
end, we design a set of efficient loss functions dedicated to gaze
tracking and further leverage the geometric constraint of the iris
boundary to guard the neural network to detect the iris-boundary
pixels effectively. For the second step, we propose to further refine
the obtained iris boundary by considering the temporal constraint
across consecutive frames (§3.3).

3.2 Iris Boundary Extraction of ASGaze
In ASGaze, we still use U-Net as the backbone of the segmentation
network. However, how to ensure efficient feature extraction needs
to be investigated carefully. Using only a cross-entropy (CE) loss

𝐿𝐶𝐸 = −
∑︁

𝑘

∑︁
𝑖
𝐼𝑘 (𝑖) × log(𝑝𝑘 (𝑖)), (2)

where 𝐼𝑘 (𝑖) is a binary value, which equals to 1 if the label of pixel
𝑥 (𝑖) is class 𝑘 and 0 otherwise, the network tends to treat each pixel
equally. This can cause an issue that the network extracts features
more effectively from the pixels that are easier to be classified (i.e.,
those are far from boundaries) and less effectively from the pixels
close to boundaries, a typical class-imbalanced problem [11, 25,
34, 50]. To address this issue, we systematically improve feature
extraction in ASGaze by the following design.

Mitigate missing iris boundary pixels. The first step is to reduce
the chance of missing iris boundary pixels. To this end, the network
should pay more attention to the pixels near iris boundary and
extract features more effectively from these pixels.

Therefore, inspired by [11, 34], we use the network output 𝑝𝑘 (𝑖),
the probability of pixel 𝑥 (𝑖) belonging to class 𝑘 , to weight the
entropy calculation during the training. In particular, a smaller
probability 𝑝𝑘 (𝑖) indicates a larger uncertainty, and we can differ-
entiate pixels to make such low-uncertainty pixels (with a larger
value of (1 − 𝑝𝑘 (𝑖)), e.g., near boundaries usually) contribute more
in the loss function. By doing so, training receives more gains when
loss function is minimized, which enforces the network to be more
effective on these pixels. Hence, the first missing loss (ML) is:

𝐿𝑀𝐿 = −
∑︁

𝑘

∑︁
𝑖
(1 − 𝑝𝑘 (𝑖))𝛾 × 𝐼𝑘 (𝑖) log(𝑝𝑘 (𝑖)), (3)

where 𝛾 is a parameter. With 𝐿𝑀𝐿 , the network can focus more on
the pixels near boundaries. However, for gaze tracking, we only
need boundary pixels for iris, so we further add a constraint to
make the network focusing on the iris boundary. To achieve this,
we can add a relatively large factor𝑤 to the loss value for the iris
boundary pixels — iris boundary pixels2 lead to higher gains to
2When we label the eye frames in the training dataset, each pixel is annotated with
a label of iris, sclera and background. Then, we employ the boundary extraction
algorithm [10] to further obtain the ground truth of the boundary on the eye frame.
Therefore, each pixel has an additional label: it is on boundary or not.



minimize the loss in the training. Therefore, 𝐿𝑀𝐿 can be further
improved as the loss 𝐿𝐼𝑀𝐿 for iris boundary:

𝐿𝐼𝑀𝐿 =

{
𝑤 · 𝐿𝑀𝐿, 𝑥 (𝑖) ∈ {𝑖𝑟𝑖𝑠_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦},
𝐿𝑀𝐿, 𝑥 (𝑖) ∉ {𝑖𝑟𝑖𝑠_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦}, (4)

where𝑤 is set to 20 empirically in our current design. With 𝐿𝐼𝑀𝐿 ,
the network becomes less likely to miss iris-boundary pixels com-
pared to the IrisTrack, as shown by “Step 1” in Figure 5(b).

Remove noisy pixels. In addition to miss certain iris boundary
pixels, it is also possible that some non-boundary pixels may be
selected by the network by mistake. To address this issue, we intro-
duce the following distance map loss 𝐿𝐷𝑀𝐿 by using the distance
between each pixel and its nearest iris-boundary pixel

𝐿𝐷𝑀𝐿 =
∑︁

𝑘

∑︁
𝑖
𝐷 (𝑖) × 𝑝𝑘 (𝑖), (5)

where 𝐷 (𝑖) is the distance from pixel 𝑥 (𝑖) to the nearest pixel
on the iris boundary, calculated by 𝐷 (𝑖) = min {𝐷𝑖𝑠 (𝑥 (𝑖), 𝑥 ( 𝑗))},
where 𝑥 ( 𝑗) ∈ {𝑖𝑟𝑖𝑠_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦}. The rationale of 𝐿𝐷𝑀𝐿 is that when
distance 𝐷 (𝑖) is used as a loss, the non-boundary pixels become
less likely to remain as candidate boundary pixels, because they
can introduce a non-trivial value to the overall loss [25] but the
final loss will be minimized during the training.

Generalized dice loss. In the early stage of training, the segmen-
tation network is not well trained yet, which cannot recognize each
pixel as one of three classes {𝑖𝑟𝑖𝑠, 𝑠𝑐𝑙𝑒𝑟𝑎, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑} reliably. In
this case, the gain of removing noisy pixels (through 𝐿𝐷𝑀𝐿) pro-
posed above is limited. Therefore we should prioritize the original
classification task first and then gradually focus on the boundary
pixels. To this end, we propose to leverage the intersection ratio [50],
for the classification result and the labeled ground truth, as an indi-
cator to infer the classification quality. Therefore, we introduce a
generalized dice loss 𝐿𝐺𝐷𝐿 as follows:

𝐿𝐺𝐷𝐿 = 1 − 2
∑
𝑘 𝛽𝑘

∑
𝑖 (𝐼𝑘 (𝑖) × 𝑝𝑘 (𝑖))∑

𝑘 𝛽𝑘
∑
𝑖 (𝐼𝑘 (𝑖) + 𝑝𝑘 (𝑖))

, (6)

where 𝐼𝑘 (𝑖) is a binary value, which equals to 1 if the label of pixel
𝑥 (𝑖) is class 𝑘 and 0 otherwise, and 𝛽𝑘 is the percentage of pixels in
each class, i.e., 𝛽𝑘 = 1∑

𝑖 (𝐼𝑘 (𝑖 ) )2 . If the classification result is perfect,
the ratio in Eq. (6) is one, i.e., a larger ratio indicates a better result.
Therefore, we add a negative sign in Eq. (6), so that the ratio can
be maximized when the overall loss is minimized in the training.

Overall loss. In summary, the loss function of the iris boundary
detector in ASGaze is defined as follows:

𝐿 = 𝐿𝐼𝑀𝐿 + (1 − 𝛼) × 𝐿𝐷𝑀𝐿 + 𝛼 × 𝐿𝐺𝐷𝐿, (7)

where 𝛼 is tuning factor to adjust the contributions of 𝐿𝐷𝑀𝐿 and
𝐿𝐺𝐷𝐿 . In our current implementation, we set 𝛼 to 1 initially. As
training goes by, 𝛼 is gradually decreased until reaching 0.5.

After training, the segmentation network outputs the probability
for every pixel from the input eye frame falling into each class. Simi-
lar to IrisTrack, we can still select the pixels with high uncertainties
between iris and sclera as the candidates of iris boundary pixels.

3.3 Iris Boundary Refinement
Figure 5(b) shows the candidates of iris boundary pixels (“Step 1”)
by our design proposed above. We can see that they form a thin
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Figure 6: Illustration of the boundary refinement by using
the temporal constraints between consecutive eye frames.

boundary compared to IrisTrack in Figure 5(a). In this subsection,
we find that we can further improve it by leveraging the temporal
constraint between consecutive eye frames.

From the result of “Step 1” in Figure 5(b), we notice that most
noisy pixels have been removed except for very few ones, as illus-
trated and zoomed in by the green rectangle of Figure 6. We further
exclude such noises by considering the temporal relations among
consecutive eye frames {𝑥𝑡−1, 𝑥𝑡 }. To this end, we adopt the SURF
operator [8] to perform feature extraction for the iris boundary
pixel candidates obtained from both eye frames. It can extract the
key pixels that best represent the iris boundary and ignore the less
important pixels. After that, feature matching [24] is performed
between the boundary pixels from these two frames. Since the num-
ber of noisy pixels is small and it is less likely to have the same
noisy pixels in each frame, this operation essentially leverages the
temporal relation to treat the common pixels from both eye frames
as the actual iris boundary pixels, and the unmatched pixels are
removed as noise in this refinement. As shown in Figure 6, the
(t-1)-th frame has been refined with the previous frame, which is
used as a reference to refine the t-th frame. Because the first frame
lacks a reference, feature matching is performed for the first two
frames together. According to our experiments in evaluation (§6),
this refinement scheme can decrease the gaze tracking error by
9.8%–32.4% under various settings.

Finally, we use the refined iris boundary pixels to fit an el-
lipse [14] to obtain its parameters {𝑐𝑥 , 𝑐𝑦, 𝑠𝑎, 𝑠𝑏, 𝜑}, where 𝑐𝑥 , 𝑐𝑦
are the center coordinates, 𝑠𝑎, 𝑠𝑏 are semi-major axis length and
semi-minor axis length respectively, and 𝜑 is the angle from the
positive horizontal axis to the ellipse’s major axis. The expression
of an ellipse can be obtained from above parameters as follows:

𝐴𝑥2 + 𝐵𝑥𝑦 +𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0, (8)

where 𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 can be calculated from {𝑐𝑥 , 𝑐𝑦, 𝑠𝑎, 𝑠𝑏, 𝜑}.
This parameterized ellipse is viewed as the iris boundary and is

used in the next systemmodule to derive gaze points (§4). Figure 5(b)
illustrates the final result (“Step 2”) of the iris boundary detector for
the input eye frame example. We can see that it contains much less
noisy pixels compared to IrisTrack, which can reduce gaze tracking
error significantly (§6).

4 GAZE RAY ESTIMATOR
This module further determines the user’s gaze information accord-
ing to the iris boundary obtained from iris boundary detector.
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Illustration of using a cone to estimate the gaze ray.

4.1 Problem Statement
The user’s gaze information can be represented as a (normal) vector,
denoted as gaze ray, containing the following two parts:

• Gaze origin: the center of the user’s iris plane that is also
the origin of the gaze ray.

• Gaze direction: the direction of the gaze ray.
After we know the user’s gaze ray, the intersection between the

gaze direction and the tracking surface gives the gaze point for the
current gaze ray. Therefore, in this section, we first introduce how
to estimate gaze ray according to the iris boundary information
obtained from iris boundary detector. In the next section, we focus
on how to determine the location of an external tracking surface.

Coordinate systems. There are three coordinate systems related
to the gaze ray estimation, as illustrated in Figure 7(a):

• Camera coordinate system (CCS): The focal of the camera
is usually the origin 𝑜𝑐 of this coordinate system, and its
𝑥-𝑦 plane is perpendicular to the focal direction. The unit of
distance in CCS is millimeter (mm).

• Image coordinate system (ICS): For each eye frame or image,
its center is the origin 𝑜𝑖 of this coordinate system, and each
of its three axes is parallel to that of CCS. The unit of distance
in ICS is also millimeter (mm).

• Pixel coordinate system (PCS): This coordinate system shifts
its origin 𝑜𝑝 to the top-left pixel of the eye frame. Different
from CCS and ICS, the unit of distance in PCS is pixel (px).

The transformation from any point in CCS to its projected point
on the 𝑥-𝑦 plane of ICS/PCS has been well studied by the camera
imaging principle [16], such as the iris center𝑀 is projected to𝑚 on
the eye frame in Figure 7(a), which is used in the implementation.

Problem. The gaze ray should be determined in the 3D camera
coordinate system, CCS. As stated above, gaze ray is a vector and
we thus need to know: 1) the position of its origin 𝑜 , and 2) the
orientation or direction of this vector ®𝑛. Because ASGaze utilizes the
iris boundary extracted from each eye frame to determine the cor-
responding gaze ray, the gaze ray estimator needs to know — how
to estimate gaze ray [𝑜, ®𝑛] in the 3D CCS from the parameterized
ellipse of an iris boundary on the 2D plane of PCS?

4.2 Determine Gaze Ray
To estimate gaze ray, an effective approach from previous studies,
such as [44], is to introduce a cone C in CCS, where the vertex of
the cone is placed at the origin of CCS (𝑜𝑐 ). The base of the cone
is a circle that represents the user’s iris, and the normal vector of
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Figure 8: (a) Setup to examine the ambiguity issue of gaze
direction. (b) Gaze points from both the correct and false
gaze directions.

the base plane is the gaze direction. As the user’s eye looks at one
direction, it is equivalent to rotating the cone relative to its vertex
so that the central axis of the cone is in that direction. As illustrated
by Figure 7(b), the cone can intersect with an image plane and the
cross-section is an ellipse, representing the iris boundary extracted
from the eye frame. Therefore, we can search for the orientation
of the cone, so that the intersected ellipse best matches the iris
boundary obtained from iris boundary estimator.

Following this design principle, after searching, the center of the
base and the orientation of the cone represent the gaze origin and
gaze direction, respectively. To this end, we define the cone C in
CCS as follows:

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑓 𝑦𝑧 + 2𝑔𝑧𝑥 + 2ℎ𝑥𝑦 + 2𝑢𝑥 + 2𝑣𝑦 + 2𝑤𝑧 + 𝑑 = 0,

where parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔, ℎ,𝑢, 𝑣,𝑤, 𝑑 can be calculated from
the ellipse parameters 𝜃 in ICS. (The ellipse parameters 𝜃 are orig-
inally defined in the pixel coordinate system PCS, which can be
easily transformed to ICS.) This definition does not tell the height
of the cone. We can use the iris diameter as a constraint to deter-
mine the height.3 With this constraint, after the cone orientation is
known, the center of cone’s base is the gaze origin 𝑜 .

Ambiguity issue of gaze direction. To determine the cone’s
orientation, the cross-section of the cone (intersected with the
image plane) can be expressed as:

𝑙𝑥 +𝑚𝑦 + 𝑛𝑧 = 0,

where (𝑙,𝑚, 𝑛) is the unit normal vector of the cross-section, i.e.,
𝑙2 +𝑚2 + 𝑛2 = 1. Then, we can use the 3D location estimation
method of circular features [44] to find the cross-intersection on
the image plane that best matches the iris boundary. However, the
solution to this matching problem is not unique. We find that we
can always obtain two different gaze directions (®𝑛1 and ®𝑛2) with the
same gaze origin 𝑜 , but only one of them is the correct direction.

Figure 8(a) shows an example, where the user’s eyes follow a
moving point on the computer monitor and the mobile phone is
placed under the monitor to capture eye frames. For each frame,
we calculate the gaze origin 𝑜 and two possible gaze directions (®𝑛1
and ®𝑛2). By using the mapping design of gaze points proposed in
the next section, we plot the gaze point trajectories for both gaze

3The height can be determined by setting the diameter of the cone’s base similar to
the iris diameter, and there are two feasible ways to obtain the iris diameter. Because
the difference of the iris size is not significant among different people, its diameter is
about 6 mm usually [12]. In our current design, we adopt this empirical value and find
that it works well among different users in evaluation (§6). If ASGaze is a customized
tracker for one particular user, we can measure the iris diameter of this user and use
this precise value in the design. We will examine such an opportunity in the future.
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Figure 9: Illustration of the correct and false gaze directions.

directions in Figure 8(b). We can see that one trajectory is within
the tracking area all the time, while the other one is always out of
the tracking area, which should be identified and avoided.

The reason of this phenomenon is because when a 3D cone is
projected to a 2D image plane, there are always two symmetric
directions that can result in the same 2D ellipse (i.e., the iris bound-
ary). In the context of gaze tracking, only one of them represents
the correct gaze direction. Figure 9 shows the examples when the
user looks at different directions. These two directions ®𝑛1 and ®𝑛2
are always symmetric with respect to the major axis of the ellipse.

To remove the ambiguity of gaze direction, existing works have
proposed “one-circle” [53] and “two-circle” [55] methods. The “one-
circle” method observes that the center of the eyeball has nearly
equal distance to the two corners of the eye. However, the eyeball
center (not the iris center) is difficult to obtain using RGB cameras.
The “two-circle” method assumes that the gaze directions of two
eyes are nearly parallel. Therefore, the gaze points obtained from
correct gaze directions should have the smallest angle compared to
other angles formed by using other gaze directions. However, this
assumption is valid mainly when the user looks at a distance. For
gaze tracking, the eye-to-camera distance is short (such as 30–40
cm), and we find this method leads to large tracking errors (§6).

Observation. To remove the gaze direction ambiguity, we leverage
a mathematical property [19] that when a circle is in translational
motion, its normal vector direction keeps unchanged relative to a
fixed point. Since the eye movement across two neighboring frames
is much smaller than the eye-to-camera distance, the displacement
of the iris plane over these two frames is nearly translational mo-
tion. Thus, we can choose the gaze direction that accumulates the
least rotation change as the result, as shown by the red vectors in
Figure 10(a). Another iris plane, associated to the false gaze direc-
tion, does not completely follow the translational motion (it also
has certain rotations). Therefore, the false direction leads to a larger
rotation change, as shown by the black vectors in Figure 10(a).

To verify this observation, we conduct an experiment, where
a user stares at a straight line of length 35 cm on the screen. For
the first frame, we can obtain ®𝑛1

1 and ®𝑛1
2, where ®𝑛1

2 is the true gaze
direction according to our collected ground truth. Then, for any
following frame 𝑡 , where 𝑡 = 1+Δ𝑡, 1+2Δ𝑡, 1+3Δ𝑡, . . . and Δ = 20 in
this experiment, we calculate the accumulated rotation differences
for the sequence of false gaze directions {®𝑛𝑡1} and the sequence of
correct directions {®𝑛𝑡2}. Figure 10(b) shows that the accumulated
rotation difference of {®𝑛𝑡1} is much larger than that of {®𝑛𝑡2}.

Solution. Inspired by this observation, we can remove the am-
biguity during the system setup stage. As introduced before in
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Figure 10: (a) Differences of the iris planes obtained from dif-
ferent gaze directions. (b) Accumulated rotation differences
of the correct and false gaze directions.

§2.2, in the first step of setup, the user looks freely at any po-
sitions on the tracking area, and the phone records eye frames.
Therefore, we can obtain two sequences of gaze directions, i.e.,
{®𝑛𝑡1} and {®𝑛𝑡2}. Then, we calculate 𝐶𝑅𝐷1 =

∑𝑇−1
𝑡=1 | | ®𝑛𝑡+1

1 − ®𝑛𝑡1 | | and
𝐶𝑅𝐷2 =

∑𝑇−1
𝑡=1 | | ®𝑛𝑡+1

2 − ®𝑛𝑡2 | | to quantify the cumulative rotation
differences for {®𝑛𝑡1} and {®𝑛𝑡2} respectively, and make the following
comparison to obtain the correct gaze direction ®𝑛:

®𝑛 =

{
®𝑛1, 𝐶𝑅𝐷1 < 𝐶𝑅𝐷2,
®𝑛2, 𝐶𝑅𝐷1 > 𝐶𝑅𝐷2 .

(9)

After the setup above, as long as the relative position of the
phone to the tracking area is unchanged, the relative direction of
{®𝑛𝑡1} and {®𝑛𝑡2} are also unchanged. Hence, the ambiguity removal
does not need to be conducted at run time. The gaze ray estimator
can directly fetch the correct gaze direction ®𝑛 obtained in the setup.
If the position of the mobile is changed, the setup needs to be
performed again to update ®𝑛 for the subsequent gaze tracking.

5 MAPPING
In this section, we introduce the design of the mapping module.

5.1 Mapping Principle
The mapping module aims to determine the relative position of
the tracking surface and the camera coordinate system. With this
information, we can obtain the gaze point on the tracking surface,
which is the intersection between tracking surface and gaze ray.
The mapping relationship is also built during system setup.

The tracking surface has its own coordinate system (TCS), as
shown in Figure 11(a), and the mapping module wants to determine
the position for the intersection of the gaze ray and the 𝑥-𝑦 plane
of TCS, denoted as 𝑝𝑡𝑐𝑠 = (𝑥𝑡 , 𝑦𝑡 ). In practice, users can place their
mobile phone nearly parallel to the tracking surface for the easy of
mapping. Therefore, the 𝑥-𝑦 plane of TCS is parallel to that of CCS,
and we can first compute the intersection 𝑝𝑐𝑐𝑠 = (𝑥𝑐 , 𝑦𝑐 ) of gaze
ray [®𝑛, 𝑜] and the 𝑥-𝑦 plane of CCS as follows:{

𝑥𝑐 = 𝑥𝑜 − 𝑧𝑜
𝑛𝑥
𝑛𝑧

,

𝑦𝑐 = 𝑦𝑜 − 𝑧𝑜
𝑛𝑦

𝑛𝑧
,

(10)

where 𝑥𝑜 , 𝑦𝑜 and 𝑧𝑜 are the coordinates of gaze origin 𝑜 along three
axes and 𝑛𝑥 , 𝑛𝑦 and 𝑛𝑧 are the coordinates of gaze direction ®𝑛 along
three axes. Then, gaze point 𝑝𝑡𝑐𝑠 = (𝑥𝑡 , 𝑦𝑡 ) can be obtained by:{

𝑥𝑡 = 𝑥𝑐 + Δ𝑥,
𝑦𝑡 = 𝑦𝑐 + Δ𝑦,

(11)
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Figure 11: (a) Offsets between TCS and CCS. (b-c) Distribution
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where Δ𝑥 and Δ𝑦 are the offset between CCS’s origin and TCS’s
origin along 𝑥 and 𝑦 axes, respectively. The mapping module aims
to obtain the values of Δ𝑥 and Δ𝑦.

5.2 Proposed Mapping Method
The offsets Δ𝑥 and Δ𝑦 are only determined by the relative position
between the mobile phone and the tracking surface. As long as this
position remains the same, these two offsets keep unchanged. Thus,
we can compute them in advance during the system setup phase.

5.2.1 Handling offset errors. In principle, when a user looks at one
point in TCS with known location 𝑥𝑡 and 𝑦𝑡 (such as a corner), if
we can obtain the accurate gaze point in CCS (𝑥𝑐 and 𝑦𝑐 in Eq. (10)),
the offsets Δ𝑥 and Δ𝑦 can be obtained through Eq. (11) directly, i.e.,
Δ𝑥 = 𝑥𝑡 − 𝑥𝑐 and Δ𝑦 = 𝑦𝑡 − 𝑦𝑐 . However, the estimated 𝑥𝑐 and 𝑦𝑐
contain errors, which can lead to an inaccurate offset estimation.

Observation. To address this issue, we observe that although each
individual (𝑥𝑐 and 𝑦𝑐 ) estimation may contain an uncertain error, if
the user can look at this point for a while, we can obtain a series
of 𝑥𝑐 and 𝑦𝑐 measurements and their average values could give a
more reliable and accurate estimation.

Figure 11(b) and (c) show one example, where the user stares
at one point 𝑥𝑐 = −237 mm and 𝑦𝑐 = −272 mm for five seconds
(we use a ruler to measure the offsets in this example). We obtain a
set of {𝑥𝑐 } and a set of {𝑦𝑐 }. For all the measurements in {𝑥𝑐 }, we
plot their distributions along the 𝑥-axis. In particular, we divide the
entire 𝑥-axis into multiple bins and compute the frequency of {𝑥𝑐 }
falling into each bin in Figure 11(b). We plot a similar histogram
for the 𝑦-axis in Figure 11(c). From the results, we observe that
the average of measurements along each axis is indeed closer to
the intended point. Therefore, we can use the average of multiple
measurements to estimate the offsets Δ𝑥 and Δ𝑦. However, we need
to know how many measurements are enough. It is related to the
latency of the setup phase, which should be minimized.

Solution. To this end, we fit these two distributions using kernel
density estimation [41]. We can see that each histogram approxi-
mately follows a Gaussian distribution. Thus, we can leverage the
𝑡-distribution [15] to quantify the possibility that the average value
of the fitted Gaussian distribution gets close enough to the true (yet
unknown) mean value of this Gaussian distribution [32]. Next, we
use the 𝑥-axis to explain the design, which can be applied to the
𝑦-axis directly. If there are 𝑛 estimations on the 𝑥-axis, we have:

𝑃 (−𝑡 𝛼
2
< 𝑡 =

𝑥 − 𝜇

𝑠/
√
𝑛

< 𝑡 𝛼
2
) = 1 − 𝛼, (12)
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Figure 12: (a) Illustration of the offset deviation. (b) Selecting
top-3 estimation results to fit a rectangle to refine the offsets
Δ𝑥 and Δ𝑦 for more accurate gaze point mapping.

where 𝑥 is the mean value of these 𝑛 estimations, 𝜇 and 𝑠 are the
mean value and the standard deviation of the fitted Gaussian distri-
bution respectively, 1 − 𝛼 represents a pre-defined confidence level,
and 𝑡 𝛼

2
are some probability values that can be obtained from the

look-up table of the 𝑡-distribution [3].
Eq. (12) suggests that the confidence range of 𝜇 is (𝑥 − 𝑠√

𝑛
𝑡 𝛼

2
, 𝑥 +

𝑠√
𝑛
𝑡 𝛼

2
). When more measurements are obtained, 𝑛 is increased

and the confidence range becomes smaller, which suggests that
the estimated average value 𝜇 of the Gaussian distribution is in a
smaller neighborhood range to its true average value. Therefore,
with a threshold 𝜂 for the confidence range, when the condition
of 𝑠√

𝑛
𝑡 𝛼

2
≤ 𝜂 is met, this 𝜇 is used as the final estimation of 𝑥𝑐 . A

similar calculation can be performed for 𝑦𝑐 along the 𝑦-axis.

5.2.2 Shape-constrained offset refinement. For any point in TCS,
the solution proposed above can obtain the offsets Δ𝑥 and Δ𝑦 al-
ready. In this subsection, we observe another opportunity to further
enhance the accuracy of the estimated offsets. The key idea is that
the tracking surface is usually a rectangle (or square). If the users
looks at the four corners of the tracking surface, we can further
leverage its shape as an additional constraint to improve the accu-
racy of the computed Δ𝑥 and Δ𝑦.

As shown in Figure 12(a), we denote the 𝑥 and 𝑦 coordinates
of the tracking surface’s four corners in TCS as (𝑥𝐴𝑡 , 𝑦𝐴𝑡 ), (𝑥𝐵𝑡 , 𝑦𝐵𝑡 ),
(𝑥𝐶𝑡 , 𝑦𝐶𝑡 ) and (𝑥𝐷𝑡 , 𝑦𝐷𝑡 ). Then, for each corner, we can use the solu-
tion proposed above to obtain our estimated coordinates (𝑥𝐴𝑐 , 𝑦𝐴𝑐 ),
(𝑥𝐵𝑐 , 𝑦𝐵𝑐 ), (𝑥𝐶𝑐 , 𝑦𝐶𝑐 ) and (𝑥𝐷𝑐 , 𝑦𝐷𝑐 ). Due to the estimation error, the
four estimated points 𝐴𝑐 , 𝐵𝑐 ,𝐶𝑐 and 𝐷𝑐 cannot form a regular rec-
tangle. Because we can use any three points to form a regular
rectangle, we propose to select only three estimated points, from
which the formed rectangle has the smallest difference compared
to the actual rectangle on the tracking surface as follows.

Step 1: We first use points 𝐴𝑐 , 𝐵𝑐 ,𝐶𝑐 to fit a rectangle as shown
in Figure 12(b). Its vertexes are:𝐴

′
𝑐 (𝑥𝐴𝑐 ,

𝑦𝐴𝑐 +𝑦𝐵𝑐
2 ), 𝐵′

𝑐 (
𝑥𝐵
𝑐 +𝑥𝐶𝑐

2 ,
𝑦𝐴𝑐 +𝑦𝐵𝑐

2 ),
𝐶

′
𝑐 (

𝑥𝐵
𝑐 +𝑥𝐶𝑐

2 , 𝑦𝐶𝑐 ) and 𝐷
′
𝑐 (𝑥𝐴𝑐 , 𝑦𝐶𝑐 ).

Step 2:We repeat the operation of Step 1 three times by selecting
𝐵𝑐 ,𝐶𝑐 , 𝐷𝑐 and 𝐴𝑐 ,𝐶𝑐 , 𝐷𝑐 and 𝐴𝑐 , 𝐵𝑐 , 𝐷𝑐 , respectively.

Step 3: For each of the four fitted rectangles above, we calculate
the width and height differences compared to the actual rectangle,
denoted as Δ𝑤 and Δℎ. We choose the fitted rectangle𝐴𝑐 , �̂�𝑐 ,𝐶𝑐 , �̂�𝑐

with the smallest difference of Δ𝑤+Δℎ
2 . Therefore, the offsets can



be further refined as follows:{
Δ𝑥 = 1

4
∑

𝑗∈{𝐴,𝐵,𝐶,𝐷 } | |𝑥
𝑗
𝑐 − 𝑥

𝑗
𝑡 | |,

Δ𝑦 = 1
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𝑗
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After obtaining the offsets Δ𝑥 and Δ𝑦 between TCS and CCS,
the gaze points on the tracking surface can be obtained by Eq. (11).

6 EVALUATION
6.1 Experimental Setup
We implement ASGaze using the RGB camera of iPhone 11 Pro.
The captured eye video frames are pre-processed prior to gaze
tracking, where the eye aspect ratio (EAR) [48] is first calculated
to remove the frames with eye blinks and the Dlib library [45] is
then used to detect facial landmarks to locate and save the region
of the user’s two eyes from each frame. Each eye region is cropped
to the resolution of 321×321 pixels. Before the network training,
all training data (to be elaborated below) are augmented through
flipping, translation, rotation and adding noises to improve the
accuracy and generalization of the neural network. We implement
the neural network of ASGaze using PyTorch 1.10. We adopt the
same backbone VGG-16 [47] for U-Net in iris boundary detector,
and use stochastic gradient descent to optimize the network with
an initial learning rate of 0.1 in the training. We then decay the
learning rate every twenty steps according to the strategy of 𝑟𝑎𝑡𝑒 =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑟𝑎𝑡𝑒 × (𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒)𝑒𝑝𝑜𝑐ℎ/𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 , with a decay rate of 0.5.
The minimum learning rate is set to 0.0005 and the network is
trained for 200 epochs with a GeForce RTX 2080Ti GPU.

Data collection. For a comprehensive evaluation, we examine the
performance of ASGaze using our collected datasets from three
different tracking surfaces (Figure 13) and one public dataset. We
recruit eight users to participate into our data collection with the
ethics approval by our university. They include three female and
five male users, aged between 21 and 28. Three of them have nor-
mal vision, and the remaining users are near-sighted. These users
have an iris radius of 5.45–6.75 mm. One advantage of using iris
boundaries to derive gaze points is that we do not need to collect
the ground truth of gaze points to train ASGaze. Instead, we only
need to annotate three areas (iris, sclera or background) for each
eye frame from the training dataset. We have developed a tool for
this annotation with a few mouse clicks. Such labeled data are used
to train the iris boundary detector, which outputs iris boundaries
to derive gaze points. Furthermore, for each tracking surface, users
also look at four corners sequentially during data collection. We use
the minimum set of frames, determined in §5, to map gaze points to
the tracking surface. Next, we introduce the three tracking surfaces.

1) Computer monitor (CMonitor). We place the mobile phone
under a 24-inch computer monitor and use its telephoto camera to
capture user’s eyes at 30 frames per second (fps). Each user naturally
looks at the monitor and the user’s eyes follow the trajectories
displayed on the monitor, which covers almost the entire monitor.
During the data collection, we also use a commercial gaze tracker,
Tobii [4], to collect the ground truth for evaluation. The default
eye-to-screen distance is about 40 cm. We have collected 24 eye-
movement video clips with 14760 frames, where each frame can
produce two images for the user’s left and right eyes. We have

Phone Screen

Tobii

Computer Monitor

Phone

Whiteboard

Phone

Figure 13: Experimental setup and tracking surfaces.

labeled 2036 eye images (1018 images for each eye) as the training
dataset and leave all remaining ones as the testing dataset.

2) Whiteboard (WBoard). We place the mobile phone under a
whiteboard, which is 42 cm × 30 cm, and use phone’s telephoto
camera to capture user’s eyes. The default eye-to-screen distance
is about 40 cm. Because Tobii cannot work on the whiteboard to
collect the ground truth of gaze points for evaluation. We draw a
3×3 grid on the whiteboard and use each grid point as anchors for
evaluation, where the location of each grid point on the whiteboard
is known in advance. Through our gaze point mapping design (§5),
we already setup the coordinate system for the whiteboard and the
location of each grid point can be marked in the coordinate system.
Later in the evaluation, users look at each of these grid points and
the distance between the estimated gaze points and the targeted
grid point measures the tracking error. For whiteboard, we have
collected nine video clips from each user. We annotate 10% frames
for training and use the remaining ones for evaluation.

3) Phone screen (PScreen). Finally, we track the user’s eyes on the
screen of the mobile phone directly. The screen size is 7.14 cm ×
14.4 cm, and the default eye-to-screen distance is 30 cm. Similar to
whiteboard, we cannot use Tobii to collect ground truth. Thus, we
adopt the same method by using a 3 × 3 grid for evaluation. For
PScreen, we also collect nine videos from each user. We annotate
10% frames for training and use the remaining ones for evaluation.
Both PScreen and CMonitor are electronic screens. Their difference
is that in CMonitor the eyes are captured by the phone but the
tracking plane is on a different device (computer screen), while in
PScreen they are on the same device.

In addition to our collected datasets, we also use a public dataset,
EVE-DS [40], for evaluation. EVE-DS is a video-based gaze tracking
dataset on computer monitor, which can directly evaluate our sys-
tem components that require temporal features from consecutive
frames. EVE-DS is collected with 54 users from three webcams and
one machine vision camera at 1920 × 1080 resolution. Four cam-
eras cover four viewpoints: below, up center, up left, and up right.
Because the associated gaze tracking design of this dataset can lever-
age the content displayed on the screen, which is also recorded in
the dataset. For evaluation, we randomly select 20 videos (with 5271
frames) of the below viewpoint from five users. We annotate 10%
frames for training and leave the remaining ones for evaluation.

Evaluation metric. In the evaluation, each estimated gaze point
is the average from both eyes, and we use the Euclidean distance
between the estimated gaze point and its ground truth value as the
performance metric to measure the tracking error. As stated above,
the ground truth can be obtained from Tobii for CMonitor and the
grid points marked for both WBoard and PScreen. For the public
dataset EVE-DS, the ground truth of gaze points is provided.
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Figure 14: Tracking performance for each tracking surface
compared with EVE [40] and IrisTrack [33]

6.2 Overall Performance
First, we compare ASGaze with the following two methods:

• EVE [40]: it is a recent appearance-based gaze tracking
method using eye video frames.

• IrisTrack [33]: it is the state-of-the-art iris boundary detec-
tion method. We supplement our designs that convert iris
boundaries to gaze points to IrisTrack in the evaluation.

In Figure 14, the average tracking error of EVE is 3.20–4.26 cm.4
The error on EVE-DS is smaller than that of other three tracking
surfaces, because EVE can leverage the contents displayed on the
screen, such as images, videos and Wikipedia, to improve accu-
racy. Since such contents are not always available in practice, we
include this mechanism for its own dataset EVE-DS but skip it for
other three tracking surfaces (where such contents are not avail-
able). Compared to EVE, IrisTrack reduces the tracking error to
2.45–3.58 cm. IrisTrack achieves a relatively large error for the
dataset of EVE-DS. Through our investigation, we find that it is
mainly because EVE-DS contains more low-quality (e.g., blurred)
and low-resolution eye images, which may affect the accuracy of
iris boundaries obtained by IrisTrack. With the designs proposed
in this paper, ASGaze outperforms these two methods and further
reduces the error to 1.69–2.40 cm, improving EVE and IrisTrack by
25%–55% and 19%–33%, respectively.

In Figure 15, we visualize the results of ASGaze for a zigzag
moving trajectory. We can see that the estimated gaze points follow
the ground truth trajectory very well. From the result, we also
observe that the tracking performance is better for the upper-part
of the trajectory. This is because the mobile phone is placed under
the computer monitor, the iris is covered less by eyelids when the
user looks at the upper-part of the monitor, where the average
tracking error is only around 1 cm for the upper-part trajectory.
Thus, if only a partial area needs the gaze tracking function in
certain applications, we can arrange the upper-part of the monitor
as a tracking area for better performance.

6.3 Ablation Study
Next, we conduct an ablation study to understand the efficacy of
each technical designs proposed in ASGaze.

Iris boundary detector module. Iris boundary detector contains
three major components, including the segmentation network, new

4As stated in §1, it is difficult for appearance-basedmethods to work on a non-electronic
surface. For the evaluation purpose on WBoard, we use the locations of all the grid
points as ground truth to train EVE. Thus, EVE is mainly effective to derive gaze
points close to these grids (not the entire whiteboard), which is the limitation of
appearance-based methods, while IrisTrack and ASGaze do no suffer this limitation.

CMonitor WBoard PScreen EVE-DS
BL 2.65 cm 2.66 cm 2.91 cm 6.18 cm

BL+RF 2.39 cm 2.18 cm 2.27 cm 4.18 cm
FULL 2.11 cm 1.83 cm 1.69 cm 2.40 cm

Table 1: Efficacy of the iris boundary detector module.

loss functions and refinement of iris boundaries. Therefore, we
develop three intermediate versions of ASGaze as follows:

• BL: this is a baseline version that is developed by removing
our loss functions and refinement of iris boundaries.

• BL+RF: this version adds the refinement of iris boundaries
on top of the previous baseline version.

• FULL: this is the full version by adding our loss functions
on top of the previous “BL+RF” version.
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Figure 15: Visualization of estimated gaze points by ASGaze.

Table 1 summarizes the results. The baseline version achieves
relatively large tracking error 2.65–6.18 cm on average. With the
refinement scheme, the tracking error is reduced to 2.18–4.18 cm,
with the improvement of 9.8%–32.4%. The new loss functions can
further reduce the tracking error to 1.69–2.40 cm, with the improve-
ment of 11.7%–42.6%. The loss functions and refinement scheme
bring comparable performance gains in ASGaze.

CMonitor WBoard PScreen EVE-DS
“two-circle” 13.04 cm 11.53 cm 6.05 cm 12.27 cm
ASGaze 2.11 cm 1.83 cm 1.69 cm 2.40 cm
Table 2: Efficacy of the ambiguity removal module.

Ambiguity removal of gaze points. To remove the ambiguity
when iris boundaries are converted to gaze points, we have pro-
posed a method in §4.2. As stated before, there is an existing “two-
circle” method. Its main idea is that when a user looks at infinity,
the gaze directions of two eyes are nearly parallel. Therefore, the
gaze points from two eyes that lead to the smallest angle are treated
to the correct ones. These two methods are compared in Table 2.
We can see that “two-circle” has much larger errors (up to 13.04 cm)
compared to ASGaze, because the gaze directions are not parallel
when the user looks at a screen or monitor in practice.

CMonitor WBoard PScreen
Measured 2.10 cm 1.77 cm 1.65 cm
ASGaze 2.11 cm 1.83 cm 1.69 cm

Table 3: Efficacy of the mapping module.



Mapping of gaze points. Finally, we study the effectiveness when
we map gaze points from the coordinate system of camera to the
tracking surface. To this end, we use a ruler to measure the actual
offset between the origins of these two different planes. Then, we
use the computed result to map gaze points to each tracking surface.
Table 3 shows that the tracking error of ASGaze is similar to that
obtained from the offset measurement, which suggests that our
proposed mapping scheme is effective.

6.4 Micro-benchmarks
In this subsection, we examine the performance of ASGaze under a
series of related factors in practice.
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Figure 16: Performance with different dihedral angles.

Different dihedral angles. In our current design, the dihedral
angle between phone and tracking surface should be nearly parallel.
In Figure 16, we examine the system performance by changing this
angle. We can see that when the dihedral angle is relatively small,
e.g., within 15◦, the influence is limited, and the increased error is
small. This indicates that the tracking performance of ASGaze is
robust and can tolerate certain dihedral angles in practice. However,
when this angle is further increased, e.g., more than 15◦, the tracking
error increases rapidly. This is because when the dihedral angle is
large, the relative position between the planes of the phone and
the surface cannot simply be compensated in the same way as
when they were in parallel. In this case, the “Mapping” module
cannot compensate the offset between them well, resulting in the
deterioration of the tracking performance. In the future, we plan to
further reduce this system setup requirement.
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Figure 17: Tracking performance for each individual user.

Different users. Figure 17 shows the detailed tracking performance
for each individual user on each tracking surface. Even though
users have different sizes of eye and iris, the geometry-based gaze
tracking designs are robust to such differences. Therefore, ASGaze
can achieve similar tracking performance among various users
on each tracking surface. User 1 has a larger error on WBoard
and PScreen than other users because this user sometimes looked
elsewhere during the data collection, rather than focusing on the
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Figure 18: Tracking performance at different working dis-
tances on each tracking surface.

required locations (Tobii cannot work on these two screens), and
we did not exclude such frames from our evaluation.

Different working distances. In this experiment, we investigate
the system performance at different working distances, as shown
in Figure 18. For “CMonitor” and “WBoard”, the default working
distance is set to 40 cm. For “PScreen”, the default distance is 30 cm.
We vary the working distance by increasing or decreasing it relative
to the default distance. Figure 18 shows that when the working
distance offset is moderate, such as from a decrease of 10 cm to
an increase of 10 cm, the tracking error changes of “CMonitor”,
“WBoard” and “PScreen” are 0.06–0.15 cm, 0.04–0.17 cm, 0.04–0.13
cm, respectively. The error change is small within this range, indi-
cating that ASGaze can performwell at moderate working distances.
When the distance is further increased, the increased error becomes
larger, such as 0.43–0.52 cm. When the distance offset reaches 20
cm, the increased tracking error is large. This is because the eyes
are small in the captured eye frames, which reduces the accuracy
of the iris detected by the “Iris Boundary Detector”.
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Figure 19: Angular errors at different working distances.

In addition, we also examine the angular error of our system at
different working distances. Since the angular error needs to be
measured with Tobii, we only conduct this experiment for “CMon-
itor”. Figure 19 shows that the average angular error varies from
2.43–2.69◦ when the working distance offset (relative to the default
working distance of 40 cm) is -10 cm to 10 cm. Given a fixed Eu-
clidean error on the screen, as the distance between the user’s eye
and screen increases, the corresponding angular error decreases.
Since the Euclidean error increases slower than the working dis-
tance in Figure 18, the angular error does not increase significantly
when the working distance offset is relatively large, e.g., 15–20 cm.

Different head poses. In this experiment, we investigate the im-
pact of user’s head poses by varying head pose intentionally. For a
comprehensive evaluation, head pose is rotated along both verti-
cal and horizontal two directions by 10°, 15°, 20° and 25°. For each
rotation angle, we measure the increased error with respect to the
error obtained without rotation. We can see from Figure 20(a) that
during natural vertical rotation of user’s head pose, e.g., within
20° for “CMonitor” and “WBoard” and within 10° for “PScreen”,
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Figure 20: Tracking performance with different (a) vertical
and (b) horizontal rotation angles on each tracking surface.

ASGaze is robust, where the maximum error increase is only 0.32
cm. However, when the rotation becomes larger, the error increases
rapidly. This is mainly because a larger vertical rotation can signifi-
cantly affect the size of captured iris. Figure 20(b) further shows the
effect of the head horizontal rotations, where the error increase is
small for all three surfaces when the rotation angle is within 15°. In
addition, the effect of horizontal rotation is slightly larger than the
vertical rotation, because horizontal rotation may cause the iris to
move closer to the corner of the eye, which causes a larger portion
of the iris boundary to be obscured by the eyelashes and eyelid.
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Figure 21: Performance under different screen brightness.

Screen brightness. In this experiment, the screen is playing a
firework explosion video with high content dynamics and varying
brightness. When users watch this video, their gaze points can
move freely, and we use Tobii to collect the ground truth. From
the firework explosion video, we obtain the HSB (Hue, Saturation,
Brightness) value of each frame to calculate its average B-channel
value, which represents the overall brightness of each frame, as
shown by the grey dashed line in Figure 21. The corresponding
tracking performance of ASGaze is plotted by the blue curve. From
the results, we can see that when the screen brightness increases,
the tracking error also tends to increase, as shown by the red mark-
ers in the figure. This is mainly because strong screen brightness
can cause reflections on the eyeball that affect the quality of the
captured eye frames. When the brightness is relatively small, the
tracking error tends to decrease, as shown by green markers.

Environmental illuminations. Since ASGaze uses a common
RGB camera, we also examine the tracking performance under
different environmental illuminations. In particular, we conduct
this experiment in three typical scenarios: indoor under normal
indoor light (∼300 Lux), indoors with the overhead light turned
off (∼10 Lux) and next to the window clear sunlight (∼1100 Lux).
Figure 22 shows that ASGaze performs best under the normal light
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Figure 22: Tracking performance for different environmental
illuminations on each tracking surface.

condition (300 Lux). When illumination becomes stronger, the error
is increased slightly, i.e., 0.11–0.26 cm. When illumination is very
weak, the tracking error becomes larger, i.e., 0.25–0.48 cm. We find
that this is because the cropped eye images become darker when the
illumination is weak. The segmentation network then may confuse
between background and iris, which causes more tracking errors.
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Wearing glasses. In Figure 23, we examine system performance
when users wear contact lens and regular glasses on both a non-
electronic screen (“WBoard”) and an electronic screen (“CMonitor”).
Compared to the performance when users do not wear glasses on
these screens, we can see that wearing contact lens does not af-
fect tracking performance, while wearing regular glasses increases
tracking error by 0.78 cm and 0.95 cm, respectively. This is mainly
due to the distorted iris boundary shape when capturing the spher-
ical aberration of the eye through glasses, thereby degrading the
tracking performance. In addition, reflections of external light on
the glasses can also affect tracking performance.
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Different moving speeds with a phone.When ASGaze tracks
gaze points on the phone’s screen, it is possible that ASGaze is used
when the user holds the phone and is walking. In this experiment,
we investigate the tracking performance when the user walks under
three different moving speeds: slow (less than one step per second),
normal (∼1.5 steps per second) and fast (∼two steps per second).
Figure 24 shows that the error becomes larger as the speed increases.
This is because with a faster movement, the phone is more likely
to be shaken by the user’s hand, which may produce more blurred
eye images and cause more differences between consecutive frames
to affect the gaze tracking performance.
Computation overhead. Finally, we examine the computation
overhead of ASGaze. In our current development, computations



are performed on a computer with an i-7 CPU. We will transfer all
the computations to the mobile phone in the future. Table 4 shows
that the setup (for ambiguity removal and gaze point mapping)
needs 4.19 second to complete, which is an one-time effort. During
gaze tracking, the execution time of the segmentation network and
refinement in iris boundary detector for one frame are 47.58 ms
and 36.25 ms, respectively. The execution time to convert one iris
boundary to the corresponding gaze point is 5.30 ms per frame.
Therefore, ASGaze can output 11 gaze points per second with our
current implementation. Note that our current design prioritizes
tracking accuracy and is still heavy to execute directly on themobile
phone. In the future, we plan to reduce its computational overhead
by exploring a more efficient backbone network, leveraging com-
pression techniques and conducting code optimization to make
system implementation more efficient.

Setup (one-time effort) 4.19 s (= 0.62 s + 3.57 s)
Iris detector (per frame) 83.83 ms (= 47.58 ms + 36.25 ms)

Gaze estimation (per frame) 5.30 ms
Table 4: Computation overhead of each module in ASGaze.

7 RELATEDWORKS

Gaze tracking methods. In the literature, gaze tracking systems
were developed on smart glasses, such as iGaze [61], iShadow [36],
CIDER [37], LiGaze [30], battery-free tracker [31], etc. Because
smart glasses are close to eyes and the distance between camera-
to-eye keeps relatively stable, these systems can achieve accurate
tracking. Moreover, many of them use near-infrared (NIR) lights [31,
37], which can further improve the performance. Parallel to the
wearable-based solutions, people are also interested in gaze tracking
on other platforms, such as computers, mobiles, etc. However, the
relative rotation and distance between eyes and camera can change,
which fundamentally challenges the gaze tracking design on such
platforms. Commercial trackers, such as Tobii [5], EyeLink [1],
Pupil Labs [2], can cope with this issue by using dedicated sensors
and hardware, which however are expensive usually.

Recently, due to the achievements of deep learning, a variety
of appearance-based methods have been proposed, by using a
common RGB webcam [9, 17, 40, 62] or the camera of a mobile
phone [13, 21, 27, 39]. The key idea of the appearance-based meth-
ods is to collect a large number of eye images and the ground
truth of the corresponding gaze points, which try to cover different
head poses, eye-to-camera distances and user diversities. With such
a dataset, they adopt a neural network to learn the transforma-
tion from eye images to gaze points. The merit of these methods
is to avoid dedicated sensors and hardware. However, their per-
formance depends on large datasets to cover these factors that
usually cause high data collection overhead. Furthermore, existing
appearance-based methods that estimate gaze points on tracking
surfaces mainly work on electronic screens, as they need to display
the ground truth of gaze points to collect training data. To over-
come these shortcomings, vGaze [57] recently leverages the visual
saliency with the depth camera of a phone to achieve accurate
tracking. In this paper, we revisit the geometric model of eyes to

achieve accurate tracking with a common RGB camera and further
extend the gaze tracking ability on external tracking surfaces.

Iris boundary detection. Iris boundary detection is a crucial
component of ASGaze. The traditional iris boundary detection
methods are mainly based on image processing, such as Hough
transform [59] and contour-based technique [26], which are sen-
sitive to environmental conditions. Recently, researchers employ
attention-based neural network [54] to achieve iris detection, which
greatly improves the performance. However, they annotate a thick
iris boundary to provide enough features for neural network to
learn, which could cause the result to contain many non-boundary
noisy pixels. Therefore, the the state-of-the-art method [33] further
converts the iris boundary detection problem to a segmentation
problem and use entropy to select boundary pixels to achieve more
accurate results. In this paper, we find that the results of [33] are
still not sufficient for gaze tracking and we propose a series of
effective designs to achieve a better iris boundary detection result.

Applications of gaze tracking.Gaze tracking can enable a variety
of useful applications. For HCI, it can be used to protect the user’s
typing privacy [32] and correct the text input error [20, 63]. For ex-
ample, gaze tracking data can accelerate the navigation menu [58]
and improve the path prediction [49] in virtual reality applications.
For smart health, analysing gaze movements can detect driver’s dis-
traction [35, 60]. For people with disabilities who cannot move their
limbs, gaze tracking can be used as alternative input method [51].
The gaze information can also assist computer-aided diagnosis [56].
For analysis of user’s interests, gaze tracking can provide useful
information of students, so that teachers can adjust teaching strate-
gies in time [6]. Gaze information can be used in retail stores as
well to optimize the placements of goods [42]. Moreover, the gaze
information can also be used to sense the cognitive behaviors of a
user, such as watching a video or reading article [28, 29].

8 CONCLUSION
This paper presents ASGaze, a new gaze tracking design that fol-
lows the eye model-based approach employed by commercial gaze
tracking solutions. ASGaze demonstrates the ability to achieve good
tracking accuracy with a common RGB camera on a variety of track-
ing surfaces commonly required by different applications. Unlike
commercial solutions with dedicated camera sensors and hardware,
the design of ASGaze encounters three unique challenges, and we
propose effective solutions to address all these challenges in this
paper. We develop a prototype system of ASGaze and conduct ex-
tensive experiments to evaluate its performance. The results show
encouraging performance under a variety of datasets and settings
and outperforms the recent method.
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