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Common design principle

Rich sensor data Recognized by learning

. . .

Applications
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Challenges

. . .

Large targets

6/25



Big deep neural network

Challenges

• Deep Learning

Too large

Resource-limited
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Server

• Long and uncontrollable latency

• High Service cost
• Potential privacy leakage 

0101…

Any countermeasure?
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Large targets
Our solution

Context (office) 

. . .
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Our solution

Context recognition

Context-oriented 
target recognition

Object recognition +

adequate storage

large and deep network

compact network

compact network
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Our solution

Context recognition

Context-oriented 
target recognition

+ Available resource 
conditions

computation
energy

• not based on designer’s experience
• Formulation facilitated configuration
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Convolutional Neural Network
Image data Conv1 Pool1 Conv2 Pool2 FC1

• Convolutional layer (dominant)

• Full connected layer

• Pooling layer
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computation

From computation to resource cost

Conv1:16 Conv2:32 fc:5

Conv1:64 Conv2:128 fc:5

Conv1:16 Conv2:32 fc:5

Unknown

a small scale network

: computation
: actual resource consumption

designed network

Derived

resource(energy)
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Now…
Context recognition

Context-oriented 
target recognition

+

• Formulation facilitated configuration

• From formulation to estimate the resource consumption

Object recognition

• Recognition task decomposition
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Enhancement: Convolutional layer

Original 
model Conv1 Conv2 Conv3

Separated 
model Conv2 Conv3Conv1a Conv1b
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Conv1Pooling Conv2 Conv3 Pool3Pool1 Pool2

Conv1 Conv2 Pool2 Conv3 Pool3Late
Pooling

Enhancement: Pooling layer
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Conv NolinearPool

ReLU ReLU.  .  . ReLU.  .  . ALL the Same !!!

ReLU

Loss

Enhancement: Activation function

Function 
combination 

ReeLUELU ReeLUELU.  .  . ReeLUReLU.  .  .

-1

ReLU

ELU
ReLU
ELULearning
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Evaluation
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• Dataset:
o Context recognition:

MIT Place2  (related to the daily contexts) 

o Object recognition:
Cifar10
Cifar100 (20 classes associated contexts)

Experiments setup
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• Overall performance

Evaluation results

• Recognition accuracy
10 targets

20 targets
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• The time delay 

Around 150ms on Desktop
Around 303ms on GALAXY S7 

Evaluation results

• Estimated energy values
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Conclusion 1, 2, 3
1. Large targets              Decompose recognition task

2. Systematic way to configure network              Execution          
overhead formulation facilitated configuration

3. Enhancement techniques

Excellent recognition performance

Lightweight
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