ASGaze: Gaze Tracking on Any Surface with your Phone

Jiani Cao¹, Chengdong Lin¹, Yang Liu², Zhenjiang Li¹ City University of Hong Kong¹, University of Cambridge²

Definition

• What is gaze tracking?

Motivation

Treatment and recovery of reading-disorder disease

Electronic Surface (e.g., computer, phone)

Non-electronic Surface (e.g., paper, whiteboard)

Doctors cannot fully understand the effectiveness of recovery.

Motivation

Our goal: an accurate, low-cost gaze tracker on any surface.

Existing Solutions

• Model-based approach

IR source, high-resolution camera

Expensive, e.g., 800~10,000 USD

Existing Solutions

• Low-cost appearance-based approach

Tracking Principle

- Optical axis cannot be obtained directly
- Infer it from the shape of iris boundary

Our System: ASGaze

Module -1: Iris Boundary Detector

Can we use the state-of-the-art [1] design directly?

9

[1] C. Lin, X. Li, Z. Li, and J. Hou. Finding stars from fireworks: Improving non-cooperative iris tracking. *IEEE Transactions on Circuits and Systems for Video Technology*, 2022.

Module -1: Iris Boundary Detector

• The thickness (uncertainties) of iris boundary is not thin enough

state-of-the-art

Class-imbalanced!

Ours

Module -1: Iris Boundary Detector

Loss function

- $L_1: L_{ML} = -\sum_k \sum_i (1 p_k(i))^\gamma \times I_k(i) \log(p_k(i))$, Avoid missing pixel $\begin{cases} w \cdot L_{ML}, x(i) \in \{iris_boundary\}, \\ L_{ML}, x(i) \notin \{iris_boundary\}, \end{cases}$
- $L_2: \sum_k \sum_i D(i) \times p_k(i)$, Remove noisy pixel
- $L_3: 1-2\frac{\sum_k \beta_k \sum_i (I_k(i) \times p_k(i))}{\sum_k \beta_k \sum_i (I_k(i) + p_k(i))}$ Classification
 - overall loss: L_1 + (1- α) L_2 + αL_3

Post Processing

- Do feature matching
- Un-matched pixels are removed

Module -2: Gaze Ray Estimator

- 2D ellipse parameters \rightarrow 3D gaze ray
 - key problem: ambiguity

- solution:
 - we choose the gaze direction that accumulates the least rotation change

Module -3: Mapping

We only need user to stare at four known points.

Experimental Setup

- Participants: 8 volunteers
- Tracking device:
 - RGB camera of iPhone 11 pro
- Tracking surfaces:
 - computer monitor
 - whiteboard
 - phone screen
 - public dataset

Overall Performance

- Compare with:
 - IrisTrack [1]
 - EVE [2]

[1] C. Lin, X. Li, Z. Li, and J. Hou. Finding stars from fireworks: Improving non-cooperative iris tracking. *IEEE Transactions on Circuits and Systems for Video Technology*, 2022.
[2] S. Park, E. Aksan, X. Zhang, and O. Hilliges. Towards end-to-end video-based eye-tracking. In *Proc. of Springer ECCV*, 2020.

Demo

Project: https://asgaze.github.io/

Code: https://github.com/Jiani-CAO/ASGaze

Conclusion1,2,3

1. <u>One goal:</u>

Gaze tracking using a common RGB camera

2. Two aspects:

- Accurate tracking
- Tracking on any surface
- 3. <u>Three modules:</u>
 - Iris boundary detector
 - Gaze ray estimator
 - Mapping

ASGaze: Gaze Tracking on Any Surface with your Phone

Jiani Cao¹, Chengdong Lin¹, Yang Liu², Zhenjiang Li¹

City University of Hong Kong¹, University of Cambridge²

